Giải:
\(\dfrac{1}{2}+\dfrac{2}{8}+\dfrac{3}{28}+\dfrac{4}{77}+\dfrac{5}{176}+\dfrac{6}{352}\)
\(=\dfrac{1}{1.2}+\dfrac{2}{2.4}+\dfrac{3}{4.7}+\dfrac{4}{7.11}+\dfrac{5}{11.16}+\dfrac{6}{16.22}\)
\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{22}\)
\(=\dfrac{1}{1}-\dfrac{1}{22}\)
\(=\dfrac{21}{22}\)
\(\dfrac{1}{2}+\dfrac{2}{8}+\dfrac{3}{28}+\dfrac{4}{77}+\dfrac{5}{176}+\dfrac{6}{352}\\ =\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{28}+\dfrac{4}{77}+\dfrac{5}{176}+\dfrac{3}{176}\\ =\dfrac{3}{4}+\dfrac{3}{28}+\dfrac{4}{77}+\dfrac{1}{22}\\ =\dfrac{21}{28}+\dfrac{3}{28}+\dfrac{7}{154}+\dfrac{8}{154}\\ =\dfrac{6}{7}+\dfrac{15}{154}\\ =\dfrac{21}{22}\)
\(\dfrac{1}{2}+\dfrac{2}{8}+\dfrac{3}{28}+\dfrac{4}{77}+\dfrac{5}{176}+\dfrac{6}{352}=\dfrac{1}{1.2}+\dfrac{2}{2.4}+\dfrac{3}{4.7}+\dfrac{4}{7.11}+\dfrac{5}{11.16}+\dfrac{6}{16.22}=1-\dfrac{1}{22}=\dfrac{21}{22}\)