Giải bài hộ với ạ:
Bài 1.So sánh và giải thích:
1) A=\(\dfrac{17^{18}+1}{17^{19}+1}\) và B=\(\dfrac{17^{17}+1}{17^{18}+1}\)
2)C= \(\dfrac{98^{99}+1}{98^{89}+1}\) và D=\(\dfrac{98^{98}+1}{98^{88}+1}\)
3)E= \(\dfrac{2011}{2012}+\dfrac{2012}{2013}\) và F=\(\dfrac{2011+2012}{2012+2013}\)
Bài 2. Cho:
S=\(\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{16}+\dfrac{1}{17}+\dfrac{1}{18}+\dfrac{1}{19}+\dfrac{1}{20}\)
Hãy so sánh với \(\dfrac{1}{2}\)
Huhu bài hơi dài và khó thông cảm ạ =((
Tính tổng:
S=2012+\(\dfrac{2012}{1+2}\)+\(\dfrac{2012}{1+2+3}\)+...+\(\dfrac{2012}{1+2+3+...2011}\)
\(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+....+\dfrac{1}{2013^2}\)
CMR B<\(\dfrac{3}{4}\)
Chứng tỏ :
a, A = \(\dfrac{1}{2.4}+\dfrac{1}{4.6}+...+\dfrac{1}{2022.2024}\) < \(\dfrac{1}{4}\)
b, B =\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{2013.2015}< \dfrac{1}{2}\)
c, C =\(\dfrac{1}{3^2}+\dfrac{1}{5^2}+\dfrac{1}{7^2}+...+\dfrac{1}{2013^2}< \dfrac{1}{4}\)
d, D =\(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{2014^2}< \dfrac{1}{2}\)
\(\left(1\dfrac{2}{3}\right)\left(1\dfrac{2}{5}\right)\left(1\dfrac{2}{7}\right).......\left(1\dfrac{2}{2011}\right)\left(1\dfrac{2}{2013}\right)\)
Bài 1: Tính gái trị biểu thức sau:
1) \(\dfrac{-5}{2}:\left(\dfrac{3}{4}-\dfrac{1}{2}\right)\)
2) \(\dfrac{298}{719}:\left(\dfrac{1}{4}+\dfrac{1}{12}-\dfrac{1}{3}\right)-\dfrac{2011}{2012}\)
3) \(\dfrac{27.18+27.103-120.27}{15.33+33.12}\)
1.tính M=\(\dfrac{\dfrac{7}{2012}+\dfrac{7}{9}-\dfrac{1}{4}}{\dfrac{5}{9}-\dfrac{3}{2012}-\dfrac{1}{2}}\)
Cho A=\(\left(\dfrac{1}{2^2}-1\right)\)\(\left(\dfrac{1}{3^2}-1\right)\)\(\left(\dfrac{1}{4^2}-1\right)\)...\(\left(\dfrac{1}{2013^2}-1\right)\)\(\left(\dfrac{1}{2014^2}-1\right)\) và B= \(-\dfrac{1}{2}\)
Hãy so sánh A và B
Tính A= \(\dfrac{1}{2!}\)-\(\dfrac{2}{3!}\)-\(\dfrac{3}{4!}\)-...-\(\dfrac{2013}{2014!}\)