ĐK: x#2, x#-2
<=> (1-6x).(x+2) + (9x+4).(x-2)= x(3x-2) + 1
<=> x+2 - 6x2 -12x + 9x2-18x +4x -8= 3x2-2x + 1
<=> x - 6x2-12x + 9x2-18x +4x - 3x2+2x= 1 -2+8
<=> -23x = 7
<=> x= \(\dfrac{-7}{23}\)
S={\(\dfrac{-7}{23}\)}
ĐK: x#2, x#-2
<=> (1-6x).(x+2) + (9x+4).(x-2)= x(3x-2) + 1
<=> x+2 - 6x2 -12x + 9x2-18x +4x -8= 3x2-2x + 1
<=> x - 6x2-12x + 9x2-18x +4x - 3x2+2x= 1 -2+8
<=> -23x = 7
<=> x= \(\dfrac{-7}{23}\)
S={\(\dfrac{-7}{23}\)}
\(\dfrac{1-6x}{x-2}+\dfrac{9x+4}{x+2}=\dfrac{x\left(3x-2\right)+1}{x^{^2}-4}\)
Thực hiện phép tính:
\(a,\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}\)
\(b,\dfrac{1}{x^2+3x+2}+\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}+\dfrac{1}{x^2+9x+20}\)
Rút gọn:
a) \(\dfrac{3\left(x-y\right)\left(x-z\right)^2}{6\left(x-y\right)\left(x-z\right)}\)
b) \(\dfrac{6x^2y^2}{8xy^5}\)
c) \(\dfrac{3x\left(1-x\right)}{2\left(x-1\right)}\)
d) \(\dfrac{9-\left(x+5\right)^2}{x^2+4x+4}\)
e) \(\dfrac{x^2-2x+1}{x^2-1}\)
f) \(\dfrac{8x-4}{8x^3-1}\)
g) \(\dfrac{x^2+5x+6}{x^2+4x+4}\)
k) \(\dfrac{20x^2-45}{\left(2x+3\right)^2}\)
Giải các phương trình sau:
\(g.\dfrac{1-3x}{6}+x-1=\dfrac{x+2}{2}\)
\(h.\dfrac{3\left(2x+1\right)}{4}-5-\dfrac{3x+2}{10}=\dfrac{2\left(3x-1\right)}{5}\)
\(i.\dfrac{4x+3}{5}-\dfrac{6x-2}{7}=\dfrac{5x+4}{3}+3\)
rút gọn rồi tính giá trị biểu thức
a,\(\dfrac{9x^2-6x+1}{9x^2+1}\) tại x =-3
b, \(\dfrac{x^2-6x+9}{-9x+3x^2}\) tại x=-\(\dfrac{1}{3}\)
c, \(\dfrac{x^2-4x+4}{2x^2-4x}\) tại x=-\(\dfrac{1}{2}\)
\(\dfrac{3}{x-5}-\dfrac{x+1}{x\left(x-5\right)}\)
\(\dfrac{8\left(y+2\right)}{3x^2}.\dfrac{15x^5}{4\left(y+2\right)^2}\)
\(\dfrac{8\left(y-1\right)}{3x^2-3}:\dfrac{4\left(y-1\right)^3}{x^2-2x+1}\)
Bài 2 . Thực hiện phép tính
a)\(6x^3\)\(\left(\dfrac{1}{3}x^2-\dfrac{5}{2}-\dfrac{1}{6}\right)\)\(-2x^5\)\(-x^3\)
b)\(\left(x-3\right)\left(x^2+3x-2\right)\)
c)\(\left(4x^3-4x^2-5x+4\right):\left(2x+1\right)\)
Giải các phương trình sau
\(1,\dfrac{3x-1}{4}+\dfrac{6x-2}{8}=\dfrac{1-3x}{6}\)
\(2,\left(2x-1\right)^2+\left(x-3\right)\left(2x-1\right)=0\)
Giải các phương trình sau:
\(e.\dfrac{12}{1-9x^2}=\dfrac{1-3x}{1+3x}-\dfrac{1+3x}{1-3x}\)
\(f.\dfrac{6x+1}{x^2-7x+10}+\dfrac{5}{x-2}=\dfrac{3}{x-5}\)
\(g.\dfrac{2}{x+2}-\dfrac{2x^2+16}{x^3+8}=\dfrac{5}{x^2-2x+4}\)
\(h.\dfrac{8}{x-8}+\dfrac{11}{x-11}=\dfrac{9}{x-9}+\dfrac{10}{x-10}\)