Tính giá trị của các biểu thức sau 1) \(A=1+2+2^2+...+2^{2015}\) 2) \(B=\left(\dfrac{1}{4}-1\right)\cdot\left(\dfrac{1}{9}-1\right)\cdot\left(\dfrac{1}{16}-1\right)\cdot\cdot\cdot\cdot\cdot\left(\dfrac{1}{400}-1\right)\) 3) \(C=\left(\dfrac{1}{4\cdot9}+\dfrac{1}{9\cdot14}+\dfrac{1}{14\cdot19}+...+\dfrac{1}{44\cdot49}\right)\cdot\dfrac{1-3-5-7-...-49}{89}\) 4) \(D=\dfrac{2^{12}\cdot3^5-4^6\cdot9^2}{\left(2^2\cdot3\right)^6+8^4\cdot3^5}-\dfrac{5^{10}\cdot7^3-25^5\cdot49^2}{\left(125\cdot7\right)^3+5^9\cdot14^3}\) 5) \(E=\dfrac{\dfrac{1}{2003}+\dfrac{1}{2004}-\dfrac{1}{2005}}{\dfrac{5}{2003}+\dfrac{5}{2004}-\dfrac{5}{2005}}-\dfrac{\dfrac{2}{2002}+\dfrac{2}{2003}-\dfrac{2}{2004}}{\dfrac{3}{2002}+\dfrac{3}{2003}-\dfrac{3}{2004}}\) 6) Cho 13+23+...+103=3025 Tính S= 23+43+63+...+203
Tính giá trị của các biểu thức sau
1) \(A=1+2+2^2+...+2^{2015}\)
2) \(B=\left(\dfrac{1}{4}-1\right)\cdot\left(\dfrac{1}{9}-1\right)\cdot\left(\dfrac{1}{16}-1\right)\cdot\cdot\cdot\cdot\cdot\left(\dfrac{1}{400}-1\right)\)
3) \(C=\left(\dfrac{1}{4\cdot9}+\dfrac{1}{9\cdot14}+\dfrac{1}{14\cdot19}+...+\dfrac{1}{44\cdot49}\right)\cdot\dfrac{1-3-5-7-...-49}{89}\)
4) \(D=\dfrac{2^{12}\cdot3^5-4^6\cdot9^2}{\left(2^2\cdot3\right)^6+8^4\cdot3^5}-\dfrac{5^{10}\cdot7^3-25^5\cdot49^2}{\left(125\cdot7\right)^3+5^9\cdot14^3}\)
5) \(E=\dfrac{\dfrac{1}{2003}+\dfrac{1}{2004}-\dfrac{1}{2005}}{\dfrac{5}{2003}+\dfrac{5}{2004}-\dfrac{5}{2005}}-\dfrac{\dfrac{2}{2002}+\dfrac{2}{2003}-\dfrac{2}{2004}}{\dfrac{3}{2002}+\dfrac{3}{2003}-\dfrac{3}{2004}}\)
6) Cho 13+23+...+103=3025
Tính S= 23+43+63+...+203
\(\sqrt{\dfrac{16}{49}}+\left(\dfrac{1}{2}\right)^3-\left|-\dfrac{4}{7}\right|-\dfrac{7}{8}\)
\(\left|\dfrac{1}{2}-\dfrac{3}{5}\right|\cdot\sqrt{9}+0.5\cdot\left(-2\dfrac{3}{5}\right)\)
\(3\dfrac{3}{3}.\dfrac{1}{3}-\dfrac{3}{4}.\dfrac{1}{3}\)
\(\left[\dfrac{11}{3}\right]-\left(\dfrac{-1}{2}\right)^2-4\dfrac{1}{2}\)
\(\left(\dfrac{3}{2}-\dfrac{5}{4}+\dfrac{1}{3}\right):\left(\dfrac{4}{3}+2\dfrac{3}{2}-\dfrac{3}{4}\right)\)
\(5\dfrac{5}{27}+\dfrac{7}{23}+0,5+\dfrac{-5}{27}+\dfrac{16}{23}\)
\(2\dfrac{5}{4}+\left(-2018\right)^0-\left[\dfrac{-1}{4}\right]\)
\(\dfrac{19}{11}.\dfrac{6}{5}+\dfrac{6^2}{11}.\dfrac{6}{5}-\left(\dfrac{1}{2}\right)^0\)
Tính nhanh :
\(\dfrac{\left(\dfrac{2}{3}\right)^3\cdot\left(-\dfrac{3}{4}\right)^2\cdot\left(-1\right)^5}{\left(\dfrac{2}{5}\right)^2\cdot\left(-\dfrac{5}{12}\right)^3}\)
Tính:
a) \(\dfrac{3^6.45^4-15^{13}.5^{\cdot-9}}{27^4.25^3+45^6}\)
b) \(\dfrac{\left(\dfrac{2}{5}\right)^7.5^7+\left(\dfrac{9}{4}\right)^3:\left(\dfrac{3}{16}\right)^3}{2^7.5^2+512}\)
Tìm số nguyên x, biết:
a) \(-4\dfrac{3}{5}\). \(2\dfrac{4}{3}\) < x < \(-2\dfrac{3}{5}\) : \(1\dfrac{6}{15}\)
b) \(-4\dfrac{1}{3}\).(\(\dfrac{1}{2}\)-\(\dfrac{1}{6}\)) < x < - \(\dfrac{2}{3}\).(\(\dfrac{1}{3}\) - \(\dfrac{1}{2}\) - \(\dfrac{3}{4}\))
Tìm x:
a) \(\dfrac{11}{12}\) - (\(\dfrac{2}{5}\) + \(\dfrac{3}{4}\)x) \(\dfrac{2}{3}\)
b) \(\dfrac{-2}{5}\) + \(\dfrac{5}{3}\) . (\(\dfrac{3}{2}\) - \(\dfrac{4}{15}\)x) = \(\dfrac{-7}{6}\)
c) \(\dfrac{1}{2}\) + \(\dfrac{3}{4}\)x = \(\dfrac{1}{4}\)
-2/5 : \(1\dfrac{1}{3}\)- ( 1/2 )\(^2\)
\(\left(\dfrac{1}{2}-\dfrac{2}{3}+\dfrac{5}{6}\right).\left(\dfrac{-3}{2}\right)^2\)
\(\left(1+\dfrac{2}{3}-\dfrac{1}{4}\right).\left(\dfrac{4}{5}-\dfrac{3}{4}\right)^2\)
1/ Cho A= \(\dfrac{1}{3}\)-\(\dfrac{2}{3^2}\)+\(\dfrac{3}{3^3}\)-\(\dfrac{4}{3^4}\)+.....+\(\dfrac{99}{3^{99}}\)-\(\dfrac{100}{3^{100}}\) Chứng minh A < \(\dfrac{3}{16}\)
2/ Cho B=(\(\dfrac{1}{2^2}\)-1)(\(\dfrac{1}{3^2}\)-1)....(\(\dfrac{1}{100^2}\)-1) So sánh B và \(\dfrac{-1}{2}\)