a) Sửa đề: Tính BD,CD
Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)(tính chất đường phân giác của tam giác)
hay \(\dfrac{AD}{30}=\dfrac{CD}{50}\)
mà AD+CD=AC(D nằm giữa A và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{30}=\dfrac{CD}{50}=\dfrac{AD+CD}{30+50}=\dfrac{AC}{80}=\dfrac{45}{80}=\dfrac{9}{16}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{AD}{30}=\dfrac{9}{16}\\\dfrac{CD}{50}=\dfrac{9}{16}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=16.875\left(cm\right)\\CD=28.125\left(cm\right)\end{matrix}\right.\)
Vậy: AD=16,875cm; CD=28,125cm