Gọi số xe loại 25 chỗ ngồi mà trường thuê là \(x\left(x\in N,12>x>0\right)\)
Số xe loại 45 chỗ ngồi mà trường thuê là \(y\left(y\in N,12>y>0\right)\)
Ta có: \(x+y=12\left(1\right)\)
Do chỉ có hai xe vừa đủ chỗ ngồi các xe còn lại đều thừa 1 chỗ
Số xe bị thừa chỗ là:
\(12-2=10\) (xe) ⇒ dư 10 chỗ
Vậy tổng số chỗ ngồi 12 xe này là: `450 + 10 = 460` (chỗ)
⇒ \(25x+45y=460\left(2\right)\)
Từ (1) và (2) ta có hệ pt:
\(\left\{{}\begin{matrix}x+y=12\\25x+45y=460\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}25x+25y=300\\25x+45y=460\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}20y=160\\x+y=12\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=8\left(tm\right)\\x=12-8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=8\left(tm\right)\\x=4\left(tm\right)\end{matrix}\right.\)
Vậy số xe 25 chỗ trường thuê là 4 xe, số xe 45 chỗ mà trường thuê là 8 xe