cat nhau tren truc tung thi x=0 ta co;
-m/2 = (m-24)/4
m=8
co cong phai dc huong h di roi mk lam het cac bai con lai
cat nhau tren truc tung thi x=0 ta co;
-m/2 = (m-24)/4
m=8
co cong phai dc huong h di roi mk lam het cac bai con lai
Bài 1: Viết phương trình đường thẳng (d) đi qua điểm M(-2;0) và cắt trục tung tại điểm có tung độ bằng 3
Bài 2:a) Viết pt đường thẳng (d1) đi qua A(-2;3) và B(1;-3)
b) Cho (d2): y = mx+2. Xác định m để (d2) song song vs (d1)
Bài 3: Cho hàm số y=(m-2)x +(n+2) (d). Hãy xác định gía trị của m,n để đg thẳng (d) cắt trục tung tại điểm có tung độ = -2 và cắt trục hoành tại điểm có hoành độ =1
Cho đường thẳng y= 2mx+3-m-x (d). Xác định m để :
a, Đường thẳng d đi qua gốc tọa độ
b, Đường thẳng d song song với đường thẳng 2y-x =5
c, Đường thẳng d tạo với Ox một góc nhọn
d, Đường thẳng d tạo với Ox một góc tù
e, Đường thẳng d cắt Ox tại điểm có hoành độ là 2
f, Đường thẳng d cắt đồ thị hàm số y=2x-3 tại một điểm có hoành độ là 2
g, Đường thẳng d cắt đồ thị hàm số y= -x+7 tại một điểm có tung độ y=4
h, Đường thẳng d đi qua giao điểm của 2 đường thẳng 2x-3y= -8 và y= -x+1
Cho hai đường tròn (O) và (O') cắt nhau tại A và B. Vẽ AC, AD thứ tự là đường kính của hai đương tròn (O) và (O')
a) Chứng minh 3 điểm C, B, D thẳng hàng
b) Đường thẳng Ac cát đường tròn (O') tại E; đường thẳng AD cắt đường tròn (O) tại F. Chứng minh 4 điểm C, D, E, F cùng nằm trên một đường tròn
c) Một đường thẳng d thay đổi luôn đi qua A cắt (O) và(O') thứ tự tại M và N. Xác định vị trí của d để CM + DN đạt giá trị lớn nhất
Cho đường tròn tâm O, đường kính AB. M là một điểm nằm trên đoạn thẳng OB (M khác O và khác B). Đường thẳng d qua M và vuông góc với AB cắt đường tròn (O) tại C, D. Trên tia MD lấy điểm E nằm ngoài đường tròn (O). Đường thẳng AE cắt (O) tại điểm thứ hai I khác A, đường thẳng BE cắt (O) tại điểm thứ hai K khác B. Gọi H là giao điểm của BI và d.
a. Chứng minh tứ giác MBEI nội tiếp được trong một đường tròn. Xác định tâm của đường tròn này.
b. Chứng minh các tam giác IEH và MEA đồng dạng với nhau.
c. Chứng minh EC.ED = EH.EM
d Chứng minh khi E thay đổi, đường thẳng HK luôn đi qua một điểm cố định
a. cho hàm số y=\((\sqrt{3}-2)x+1\)
tính giá trị khi x=\(\sqrt{3}-2\)
b. tìm m để đường y=2x-1 và đường y=3x+m cắt nhau tại một điểm trên trục tung
Từ điểm A nằm ngoài đường tròn (O;R) vẽ một đường thẳng d vuông góc với OA tại A . Gọi M là một điểm tùy ý trên d . Vẽ tiếp tuyến MB và MC với (O;R) ( B,C là hai tiếp điểm ) . OM cắt BC tại H
a) chứng minh ; 5 điểm O,B,M,A,C cùng nằm trên 1 đường tròn
b) Gọi D là một điểm trên cung nhỏ BC của đường tròn (O) (cung DB < cung DC ). Đường thẳng DH cắt đường tròn (O) tại điểm thứ 2 là K . Chứng tỏ ; MO là phân giác của góc DMK
c) chứng tỏ ; Khi M di động trên d thì BC luôn đi qua một điểm cố định và H di động trên một đường cố định
d) Cho biêt1 OA= 3R . TÌm vị trí điểm M trên d sao cho tứ giác OBMC có diện tích nhỏ nhất.
( siêu khó :)) . Giải dùm )
Bài 1: Cho đường tròn (O;R),đượng kính AB,qua A và B vẽ lần lượt hai tiếp tuyến d và d' với đường tròn (O) , một đường thẳng qua O cắt d ở M, cắt d' ở P.Từ O vẽ một đường vuông góc với MP và cắt d' tại N
a) Cm ON=OP và △NMP cân
b)Cm AN.BN=R2
c) Cm AB là tiếp tuyến của đường tròn,đường kính MN
d)M di chuyển trên đường thẳng d,tìm vị trí của M để Stứ giác AMNB là nhỏ nhất
Cho hàm số: y=(m-1)x+m (d)
a, Tìm m để hàm số đồng biến, nghịch biến
b, Tìm m để hàm số song song với trục hoành
c, Tìm m để đồ thị hàm số đi qua điểm A(-1;1)
d, Tìm m để đồ thị hàm số song song với đường thẳng có phương trrình: x-2y=1
e, Tìm m để đồ thị hàm số cắt trục hoành tại điểm A có hoành độ \(x=2-\frac{\sqrt{3}}{2}\)
f, Chứng minh rằng đường thẳng (d) luôn đi qua điểm cố định khi m thay đổi
Cho nửa đường tròn tâm O đường kính AB.Một điểm C cố định thuộc đoạn thẳng AO (C khác A,O). Đường thẳng đi qua C và vuông góc với AO cắt nửa đường tròn tại D . Trên cung BD lấy điểm M(M khác B và D).Tiếp tuyến của nửa đường tròn đã cho tại M cắt đường thẳng CD tại E. Gọi F là giao điểm của AM và CD.
1) chứng minh EM=EF
2)Gọi I là tâm đường tròn ngoại tiếp tam giác FDM. Chứng minh ba điểm D, I, B thẳng hàng, từ đó suy ra góc ABI có số đo góc không đổi khi M di chuyển trên cung BD.