Đặt f ( n ) = ( n 2 + n + 1 ) 2 + 1 . Xét dãy số ( u n ) sao cho u n = f ( 1 ) . f ( 3 ) . f ( 5 ) . . . f ( 2 n - 1 ) f ( 2 ) . f ( 4 ) . f ( 6 ) . . . f ( 2 n ) . Tính lim n u n
A. l i m n u n = 2
B. l i m n u n = 1 3
C. l i m n u n = 3
D. l i m n u n = 1 2
Cho hàm số f(n)= 1 1 . 2 . 3 + 1 2 . 3 . 4 + . . . + 1 n . ( n + 1 ) . ( n + 2 ) = n ( n + 3 ) 4 ( n + 1 ) ( n + 2 ) , n ∈ N * . Kết quả giới hạn lim ( 2 n 2 + 1 - 1 ) f ( n ) 5 n + 1 = a b ( b ∈ Z ) . Giá trị của a 2 + b 2 là
A.101
B.443
C.363
D.402
Xét hàm số f x = 2 x 2 - 2 x x - 1
1. Cho biến x những giá trị khác 1 lập thành dãy số x n , x n → 1 như trong bảng sau:
Khi đó, các giá trị tương ứng của hàm số
f ( x 1 ) , f ( x 2 ) , … , f ( x n ) , …
cũng lập thành một dãy số mà ta kí hiệu là f ( x n ) .
a) Chứng minh rằng f ( x n ) = 2 x n = ( 2 n + 2 ) / n .
b) Tìm giới hạn của dãy số f ( x n ) .
2. Chứng minh rằng với dãy số bất kì x n , x n ≠ 1 và x n → 1 , ta luôn có f ( x n ) → 2 .
(Với tính chất thể hiện trong câu 2, ta nói hàm số f x = 2 x 2 - 2 x x - 1 có giới hạn là 2 khi x dần tới 1).
Cho hàm số f(n)=cos a 2 n , ( a ≠ 0 , n ∈ N ) . Tính giới hạn lim n → + ∞ ( 1 ) . f ( 2 ) . . . f ( n ) .
A. sin a 2 a
B. 2 sin a a
C. sin 2 a 2 a
D. sin a a
Cho hàm số f(n)= 1+3+6+10+...+ n ( n + 1 ) 2 ( n ∈ N * ) .
Biết lim f ( n ) ( 3 n + 1 ) ( 5 n 2 + 2 ) = a b ( a , b ∈ Z ) phân số này tối giản. Giá trị b - 5a là
A.50
B.45
C.85
D.60
dãy số nào là 1 cấp số cộng ( giải chi tiết )
a) 10; 5; 0; -4; -9; -14
b) -2; 5; 12; 19; 29
c) -3; -3; -3; -3; -3
d) \(u_n=n^2\)
e) \(u_n=1-4n\)
f) \(u_n=2-5n\)
dãy số nào là 1 cấp số cộng ( giải chi tiết )
a) 1; -3; -7; -11; -15
b) 1; -3; -6; -9; -12
c) 2;2;2;2;3;3;3;3;3
d) \(u_n=2n-5\)
e) \(u_n=2^n\)
f) \(u_n=4-3n\)
1.lim(\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{n\left(n+1\right)}\))
2.Tìm tất cả các giá trị của a sao cho lim\(\frac{4^n+a.5^n}{\left(2a-1\right).5^n+2^n}\)=1
3. Cho \(a\in R\)và lim(\(\sqrt{n^2+an+4}-n+1=5\)).Tìm a
4.Cho\(Lim_{(x->2)}f\left(x\right)=5\). Tìm giới hạn \(lim_{\left(x->2\right)}\sqrt{[f\left(x\right)-3]x}\)
Cho hàm số f(n)= a n + 1 + b n + 2 + c n + 3 ( n ∈ N * ) với a, b, c là hằng số thỏa mãn a+b+c=0. Khẳng định nào sau đây đúng?
A. lim x → + ∞ f ( n ) = - 1
B. lim x → + ∞ f ( n ) = 1
C. lim x → + ∞ f ( n ) = 0
D. lim x → + ∞ f ( n ) = 2