Ta coi \(B=2^1+2^2+2^3+...+2^{100}\)
\(\Rightarrow A=B+2\)
Ta có:
\(B=2^1+2^2+2^3+...+2^{100}\)
\(\Rightarrow2B=\left(2^1+2^2+2^3+...+2^{100}\right).2\)
\(=2^2+2^3+2^4+...+2^{101}\)
\(\Rightarrow B=2B-B=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2^1+2^2+2^3+...+2^{100}\right)\)
\(=2^{101}-2\)
\(\Rightarrow A=2^{101}-2+2=2^{101}\)