\(\dfrac{1-2x}{2x}+\dfrac{2x}{2x-1}+\dfrac{1}{2x-4x^2}=\dfrac{1-2x}{2x}-\dfrac{2x}{1-2x}+\dfrac{1}{2x\left(1-2x\right)}=\dfrac{\left(1-2x\right)^2}{2x\left(1-2x\right)}-\dfrac{2x.2x}{2x\left(1-2x\right)}+\dfrac{1}{2x\left(1-2x\right)}=\dfrac{1-4x+4x^2-4x^2+1}{2x\left(1-2x\right)}=\dfrac{2-4x}{2x\left(1-2x\right)}=\dfrac{2\left(1-2x\right)}{2x\left(1-2x\right)}=\dfrac{1}{x}\)
\(=\dfrac{\left(2x-1\right)\left(1-2x\right)}{2x\left(2x-1\right)}+\dfrac{4x^2}{2x\left(2x-1\right)}+\dfrac{-1}{2x\left(2x-1\right)}=\dfrac{\left(2x-1\right)\left(1-2x\right)+4x^2-1}{2x\left(2x-1\right)}=\dfrac{2x-4x^2-1+2x+4x^2-1}{2x\left(2x-1\right)}=\dfrac{4x-2}{2\left(2x-1\right)}=\dfrac{2\left(2x-1\right)}{2\left(2x-1\right)}=\dfrac{2}{2}=1\)