Có tất cả bao nhiêu giá trị của tham số m để giá trị lớn nhất của hàm số y = x 2 − 2 x + m trên đoạn [-1;2] bằng 5.
A. 3
B. 1
C. 2
D. 4
Cho hàm số f(x)=(2 x +m)/(√x+1) với m là tham số thực, m>1. Gọi S là tập tất cả các giá trị nguyên dương của m để hàm số có giá trị lớn nhất trên đoạn [0;4] nhỏ hơn 3. Số phần tử của tập S là
A. 1
B. 3
C. 0
D. 2
Có bao nhiêu giá trị của tham số m để giá trị lớn nhất của hàm số y = x - m 2 - 2 x - m trên đoạn [0;4] bằng -1
A. 3
B. 2
C. 1
D. 0
Có bao nhiêu giá trị thực của tham số m để giá trị lớn nhất của hàm số y = x 2 + 2 x + m - 4 trên đoạn [-2;1] bằng 4?
A. 1.
B. 2.
C. 3.
D. 4.
Cho hàm số y = m x + 1 2 x − 1 (m là tham số, m ≠ 2 ). Gọi a, b lần lượt giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên 1 ; 3 . Khi đó có bao nhiêu giá trị của m để a . b = 1 5 .
A. 0
B. 2
C. 1
D. 3
Gọi S là tập hợp tất cả các giá trị thực của tham số m sao cho giá trị lớn nhất của hàm số y = x 3 − 3 x + m trên đoạn [0;2] bằng 3. Tập hợp S có bao nhiêu phần tử?
A. 1
B. 2
C. 6
D. 0
Có bao nhiêu giá trị thực của tham số m để hàm số y = cos x + m . sin x + 1 cos x + 2 có giá trị lớn nhất bằng 1
A. 0
B. 1
C. 2
D. 3
Tìm tất cả các giá trị của tham số m để hàm số y = x + m x 2 + x + 1 có giá trị lớn nhất trên ℝ nhỏ hơn hoặc bằng 1.
A. m ≤ 1
B. m ≥ 1
C. m ≥ - 1
D. m ≤ - 1
Số các giá trị thực của tham số m để giá trị nhỏ nhất của hàm số y = x - m 2 + m x + 1 trên đoạn [0;1] bằng -2 là:
A. 2
B. 0
C. 3
D. 1