Phương trình đã cho có nghiệm khi:
\(2021+m^2\ge45^2\)
\(\Rightarrow m^2\ge4\)
\(\Rightarrow\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\)
\(\Rightarrow\) Có 8 giá trị của m thỏa mãn
Phương trình đã cho có nghiệm khi:
\(2021+m^2\ge45^2\)
\(\Rightarrow m^2\ge4\)
\(\Rightarrow\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\)
\(\Rightarrow\) Có 8 giá trị của m thỏa mãn
Gọi M, m lần lượt là GTLN và GTNN của hàm số \(y=\frac{4\cos^2x+6\sin x.\cos x+1}{4-\sin2x-2\sin^2x}\) , khi đó giá trị của 7M - 14m bằng:
A. \(-8\sqrt{2}-10\)
B. \(-8\sqrt{2}+10\)
C. \(18\sqrt{2}-10\)
D. \(24\sqrt{2}-10\)
Tập hợp tất cả các giá trị của tham số m để phương trình cos x = m+1 có đúng hai nghiệm phân biệt trên [0;3π/2] là: A. 4 B. 3 C.[-2;-1] D. (-2;1]
Cho \(sin^2x+\left(2m-2\right)sinxcosx-\left(m+1\right)cos^2x=m\)
a, Giải khi m=-2
b, Tìm m để phương trình có nghiệm
Số giá trị nguyên của m để pt có nghiệm trên \([\frac{\pi}{-4};\frac{\pi}{4}]\) \(2\sin^2x-\sin X\cos X-M\cos^2x=1\)
Cho phương trình (1-Sinx)(Cos2x + 3mSinx+Sinx-1)=\(mCos^2x\) (m là tham số). Tìm các giá trị thực của m để phương trình có 6 nghiệm khác nhau thuộc khoảng \(\left(-\dfrac{\Pi}{2};2\Pi\right)\)
1. Nghiệm dương nhỏ nhất của pt: 4sin2x + \(3\sqrt{3}\) sin2x - 2cos2x = 4 là?
2. Pt: 6sin2x + \(7\sqrt{3}\) sin2x - 8cos2x = 6 có các nghiệm là?
3. Pt: sinx + \(\sqrt{3}\) cosx = 1 có các nghiệm dạng x = \(\alpha\)+ k2\(\pi\); x = \(\beta\) + k2\(\pi\) ; \(-\pi< \alpha,\beta< \pi\) , k \(\varepsilon Z\). Tính \(\alpha.\beta\)
4. Số điểm biểu diễn nghiệm của pt: cos2x - \(\sqrt{3}sin2x\) = 1 + 2sin2x trên đường tròn lượng giác là?
5. Nghiệm dương nhỏ nhất của pt: 4sin2x + \(3\sqrt{3}sin2x-2cos^2x=4\) là?
6. Pt: \(cos2x+sinx=\sqrt{3}\left(cosx-sin2x\right)\) có bn nghiệm \(x\varepsilon\left(0;2020\right)\)?
7. Pt: \(\left(sin\frac{x}{2}+cos\frac{x}{2}\right)^2+\sqrt{3}cosx=2\) có nghiệm dương nhỏ nhất là a và nghiệm âm lớn nhất là b thì a + b là?
8. Pt: \(3sin3x+\sqrt{3}cos9x=2cosx+4sin^33x\) có số nghiệm trên \(\left(0;\frac{\pi}{2}\right)\) là?
9. Tìm m để pt: \(sin2x+cos^2x=\frac{m}{2}\) có nghiệm là?
10. Cho pt: \(\left(m^2+2\right)cos^2x-2msin2x+1=0\). Để pt có nghiệm thì giá trị thích hợp của tham số m là?
11. Tìm tập giá trị lớn nhất, nhỏ nhất của hs sau: \(y=\frac{sin^22x+3sin4x}{2cos^22x-sin4x+2}\)
Tính tổng tất cả các giá trị \(m\) nguyên để phương trình \(mcos2x=\dfrac{cos^4x-sin^4x}{sinx}\) có đúng 4 nghiệm phân biệt thuộc \(\left(0;2\pi\right)\).
A. 1
B. 2
C. 3
D. 0
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn \(\left[-2018;2018\right]\) để phương trình : \(\left(m+1\right)sin^2x-sin2x+cos2x=0\) có nghiệm ?
Cho phương trình \(\left(cosx+1\right)\left(4cos2x-mcosx\right)=msin^2x\) . Số các giá trị nguyên của m để phương trình có đúng 2 nghiệm thuộc \(\left[0;\dfrac{2\pi}{3}\right]\) là
Giải các phương trình sau :
a) \(2\cos^2x-3\cos x+1=0\)
b) \(25\sin^2x+15\sin2x+9\cos^2x=25\)
c) \(2\sin x+\cos x=1\)
d) \(\sin x+1,5\cot x=0\)