1, cho phương trình \(sin2x-\left(2m+\sqrt{2}\right)\left(sinx+cosx\right)+2m\sqrt{2}+1=0\) tìm các giá trị m để phương trình có đúng 2 nghiệm \(x\in\left(0;\dfrac{5\Pi}{4}\right)\)
2,tìm tất cả các giá trị thực của tham số m để phương trình \(cos2x+\left(2m+1\right)sinx-m-1=0\) có đúng 2 nghiệm thuộc khoảng \(\left(\dfrac{\Pi}{2};\dfrac{3\Pi}{2}\right)\)
3, cho phương trình \(cos^2x-2mcosx+6m-9=0\) tìm các giá trị m để phương trình có nghiệm thuộc khoảng \(\left(-\dfrac{\Pi}{2};\dfrac{\Pi}{2}\right)\)
1. Tính tổng các nghiệm trên đoạn [0,4pi] của phương trình 3cosx-1=0
2. Giải phương trình
a/ \(\frac{1}{cos^2x}-2tanx-4=0\)
b/\(1+sinxcosx\left(x+\frac{pi}{2}\right)=sin\left(x-\frac{pi}{2}\right)\)
c/ \(\frac{1}{sin^2x}+3tan^2x=5\)
d/ \(\frac{2}{1+cot^2x}=1-cosx\)
Cho phương trình \(\left(cosx+1\right)\left(4cos2x-mcosx\right)=msin^2x\) . Số các giá trị nguyên của m để phương trình có đúng 2 nghiệm thuộc \(\left[0;\dfrac{2\pi}{3}\right]\) là
Phương trình nào dưới đây có tập nghiệm trùng với tập nghiệm của phương trình : \(sin^2x+\sqrt{3}sinxcosx=1\) ?
A . \(cosx\left(cot^2x-3\right)=0\)
B . \(sin\left(x+\frac{\Pi}{2}\right)[tan\left(x+\frac{\Pi}{4}\right)-2-\sqrt{3}]=0\)
C . \([cos^2x\left(x+\frac{\Pi}{2}\right)-1]\left(tanx-\sqrt{3}\right)=0\)
D . \(\left(sinx-1\right)\left(cotx-\sqrt{3}\right)=0\)
Trình bày bài giải chi tiết rồi ms chọn đáp án nha các bạn .
HELP ME !!!!!!
Cho phương trình (1-Sinx)(Cos2x + 3mSinx+Sinx-1)=\(mCos^2x\) (m là tham số). Tìm các giá trị thực của m để phương trình có 6 nghiệm khác nhau thuộc khoảng \(\left(-\dfrac{\Pi}{2};2\Pi\right)\)
Giải phương trình sau:
a) $\tan ^2x+4\cos ^2x+7=4\tan x+8\cot x$
b) $6\sin ^2x+2\cos ^2x-2\sqrt{3}\sin 2x=14\sin \left(x-\frac{\pi }{6}\right)$
Giải phương trình:
\(\left(sin^2x+\frac{1}{sin^2x}\right)^2+\left(cos^2x+\frac{1}{cos^2x}\right)^2=\frac{7}{2}-sin^2y+2siny\)
Giải phương trình:
\(\left(sin^2x+\frac{1}{sin^2x}\right)^2+\left(cos^2x+\frac{1}{cos^2x}\right)^2=\frac{7}{2}-sin^2y+2siny\)
Tính tổng tất cả các giá trị \(m\) nguyên để phương trình \(mcos2x=\dfrac{cos^4x-sin^4x}{sinx}\) có đúng 4 nghiệm phân biệt thuộc \(\left(0;2\pi\right)\).
A. 1
B. 2
C. 3
D. 0