Dựa vào đồ thị của hàm số y = sin x, vẽ đồ thị của hàm số y = |sin x|
Cho hàm số f ( x = x 3 + b x 2 + c x + d , C g x = x 2 - 3 x + 1
Với các số b, c, d tìm được ở bài 19, hãy:
a) Viết phương trình tiếp tuyến của đồ thị (C) tại điểm có hoành độ x = - 1 .
b) Giải phương trình f ' sin x = 0 .
c) tính lim x → 0 f ' ' sin 5 x + 1 g ' sin 3 x + 3
I. Cho hàm số y = x3 - 2x2 + x - 1 có đồ thị (C). Viết phương trình tiếp tuyến của đồ thị hàm số (C), biết rằng đồ thị này song song với đường thẳng y = -5x + 17.
II. Xét tính liên tục của hàm số sau:
\(\left\{{}\begin{matrix}\dfrac{-x^2+2x+1}{-x-1}|khix=-1\\3-2x|khix=1\end{matrix}\right.\)tại x0 = 1
III. Cho hình chóp S.ABCD có SA \(\perp\) (ABCD), ABCD là hình chữ nhật. Chứng minh rằng BC \(\perp\) (SAC).
Giải giúp mình nhé. Mai mình thi HKII rồi. Cảm ơn các bạn rất nhiều.
Cho hàm số $f\left( x \right)={{x}^{3}}+3$ có đồ thị $\left( C \right)$. Viết phương trình tiếp tuyến của đồ thị $\left( C \right)$ tại điểm có hoành độ ${{x}_{0}}=1$.
Đồ thị hàm số y=sinx được suy ra từ đồ thị (C) của hàm số y=cos x+1 bằng cách
A. Tịnh tiến (C) qua trái một đoạn có độ dài là π 2 và lên trên 1 đơn vị
B. Tịnh tiến (C) qua phải một đoạn có độ dài là π 2 và lên trên 1 đơn vị
C. Tịnh tiến (C) qua trái một đoạn có độ dài là π 2 và xuống dưới 1 đơn vị
D. Tịnh tiến (C) qua trái một đoạn có độ dài là π 2 và xuống dưới 1 đơn vị
Mình đọc sách có viết: Sách cũng có nói Parabol k thể được gọi là đồ thị hàm số. Mình hơi thắc mắc vì ở trường thầy cô đều nói là đồ thị hàm số bậc 1,2. Như vậy hàm số bậc 1,2 khi vẽ ra hệ descart có được gọi là đồ thị hs k ạ. Cao nhân giải đáp giúp mình với
tìm m thỏa mãn yêu cầu bài toán
a) đồ thị hàm số \(y=\dfrac{x+3}{2x+3m}\) có đường tiệm cận đứng đi qua điểm M (3;-1)
b) đường thẳng x = -2 là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{2x-3}{x+m}\)
c) biết đồ thị hàm số \(y=\dfrac{ax+1}{bx-2}\) có tiệm cận đứng là x = 2 và tiệm cận ngang y = 3. Tính 2a+3b
d) đồ thị hàm số \(y=\dfrac{x+2}{x^2+2x+m^2-3m}\) có 2 đường tiệm cận đứng
tìm m thỏa mãn yêu cầu bài toán
a) đồ thị hàm số \(y=\dfrac{mx-1}{2x+m}\) có đường tiệm cận đứng đi qua điểm A (-1;\(\sqrt{2}\))
b) đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{x-2}{2x-m}\)
c) biết đồ thị hàm số \(y=\dfrac{\left(m+1\right)x+2}{x-n+1}\) nhận trục hoành và trục tung làm 2 đường tiệm cận. Tính m+n
d) đồ thị hàm số \(y=\dfrac{x-1}{x^2+2\left(m-1\right)x+m^2-2}\) có 2 đường tiệm cận đứng
I. Xét tính liên tục của hàm số f (x) =\(\left\{{}\begin{matrix}\dfrac{x^2-3x+2}{x-1}|khix\ne1\\1-2x|khix=1\end{matrix}\right.\)tại điểm x0 = 1
II. Cho hàm số y = -x3 - x2 - 6x + 1 có đồ thị (C). Viết phương trình tiếp tuyến của đồ thị (C), biết rằng tiếp tuyến đó song song với đường thẳng
y = -6x + 17
III. Cho hình chóp S.ABCD có SA \(\perp\) (ABCD). Đáy ABCD là hình thang vuông tại A. Chứng minh rằng: BC \(\perp\) (SAB)
IV. Cho tứ diện ABCD có BCD là tam giác đều cạnh bằng a. AB vuông góc với mặt phẳng (BCD) và AB = \(\dfrac{a}{2}\). Tính khoảng cách từ D đến mp(ABC)
giải giúp mình nhé. cảm ơn các bạn
Phương trình sin 2 x = - 1 2 có bao nhiêu nghiệm thỏa mãn 0 < x < π
A. 1
B. 3
C. 2
D. 4