Chọn C
Phương trình tham số của đường thẳng Δ:
Gọi tâm I ∈ Δ => I (3+2t;1-t;1-2t)
Vì mặt cầu (S) đồng thời tiếp xúc với hai mặt phẳng (α1) và (α2) nên ta có
Do đó có vô số mặt cầu thỏa yêu cầu đề bài.
Chọn C
Phương trình tham số của đường thẳng Δ:
Gọi tâm I ∈ Δ => I (3+2t;1-t;1-2t)
Vì mặt cầu (S) đồng thời tiếp xúc với hai mặt phẳng (α1) và (α2) nên ta có
Do đó có vô số mặt cầu thỏa yêu cầu đề bài.
Trong không gian Oxyz, cho biết có hai mặt cầu có tâm nằm trên đường thẳng d: x 2 = y - 1 1 = z + 2 - 1 , tiếp xúc đồng thời với 2 mặt phẳng: ( α ) : x+2y-2z+1=0 và ( β ) : 2x-3y-6z-2=0. Gọi R 1 , R 2 ( R 1 > R 2 ) là bán kính 2 mặt cầu đó. Tỉ số R 1 R 2 bằng
A. 2
B. 3
C. 2
D. 4
Trong không gian Oxyz, cho biết có hai mặt cầu có tâm cùng nằm trên đường thẳng d : x 2 = y - 1 1 = z + 2 - 1 và tiếp xúc với mặt phẳng ( α ) : x + 2 y - 2 z + 1 = 0 ; ( β ) : 2 x - 3 y - 6 z - 2 = 0 có bán kính lần lượt bằng R 1 , R 2 ( R 1 > R 2 ) Tỉ số R 1 R 2 bằng
B. 3
C. 2
Cho đường thẳng d: x - 1 1 = y - 2 - 2 = z - 2 1 và điểm A (1; 2; 1). Tìm bán kính của mặt cầu có tâm I nằm trên d, đi qua A và tiếp xúc với mặt phẳng (P): x - 2y + 2z + 1 = 0
A. R=2
B. R=4
C. R=1
D. R=3
Trong không gian với hệ trục tọa độ Oxyz cho hai mặt cầu:
( S 1 ) : x 2 + y 2 + z 2 + 4 x + 2 y + z = 0 ;
( S 2 ) ; x 2 + y 2 + z 2 - 2 x - y - z = 0
cắt nhau theo một đường tròn (C) nằm trong mặt phẳng (P). Cho các điểm A (1; 0; 0), B (0; 2; 0), C (0; 0; 3). Có bao nhiêu mặt cầu tâm thuộc (P) và tiếp xúc với cả ba đường thẳng AB, BC, CA?
A. 4 Mặt cầu.
B. 2 Mặt cầu.
C. 3 Mặt cầu.
D. 1 Mặt cầu.
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x 2 = y - 3 1 = z - 2 1 và hai mặt phẳng
(P): x-2y+2z=0. (Q): x-2y+3z-5=0. Mặt cầu (S) có tâm I là giao điểm của đường thẳng d và mặt phẳng (P). Mặt phẳng (Q) tiếp xúc với mặt cầu (S). Viết phương trình của mặt cầu (S).
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng
d: x - 1 2 = y + 1 3 = z - 3 - 1 và mặt phẳng (P): x + 2y - 2z = 0.
Phương trình mặt cầu (S) có tâm tiếp xúc và cách (P) một
khoảng bằng 1
Trong không gian với hệ tọa độ Oxyz, cho các mặt phẳng P : 2 x − y − z − 2 = 0 ; Q : x − 2 y + z + 2 = 0 ; R : x + y − 2 z + 2 = 0 , T : x + y + z = 0 . Hỏi có bao nhiêu mặt cầu có tâm thuộc (T) và tiếp xúc với P , Q , R ?
A. 1
B. 2
C. 3
D. 4
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x = t y = − 1 z = − t và 2 mặt phẳng (P),(Q) lần lượt có phương trình x + 2 y + 2 z + 3 = 0 ; x + 2 y + 2 z + 7 = 0 . Viết phương trình mặt cầu (S) có tâm I thuộc đường thẳng d, tiếp xúc với hai mặt phẳng (P) và (Q).
A. x + 3 2 + y + 1 2 + z − 3 2 = 4 9
B. x − 3 2 + y + 1 2 + z + 3 2 = 4 9
C. x + 3 2 + y + 1 2 + z + 3 2 = 4 9
D. x − 3 2 + y − 1 2 + z + 3 2 = 4 9
Trong không gian với hệ trục tọa độ Oxyz, phương trình mặt cầu (S) có tâm nằm trên đường thẳng d : x 1 = y - 1 1 = z - 2 1 và tiếp xúc với hai mặt phẳng (P): 2x - z - 4 = 0, (Q): x – 2y – 2 = 0
A . S : x - 1 2 + y - 2 2 + z - 3 2 = 5
B . S : x - 1 2 + y - 2 2 + z - 3 2 = 5
C . S : x + 1 2 + y + 2 2 + z + 3 2 = 5
D . S : x - 1 2 + y - 2 2 + z - 3 2 = 3