Đáp án B.
Xét hàm số y = x 4 - 2 m x 2 + m - 1 , có y ' = 4 x 3 - 4 m x = 0 ⇔ [ x = 0 x 2 = m .
Để hàm số có 3 điểm cực trị khi và chỉ khi m > 0.
Khi đó, gọi A(0;m - 1), B( m ; - m 2 + m - 1 ) và C ( - m ; - m 2 + m - 1 ) là 3 điểm cực trị của ĐTHS.
Gọi H là trung điểm của BC suy ra H 0 ; - m 2 + m - 1 ⇒ A H = m 2 .
Diện tích tam giác ABC là S ∆ A B C = 1 2 . A H . B C = 1 2 m 2 . 2 m = m 2 m .
Và A B = A C = m 4 + m suy ra S ∆ A B C = A B . A C . B C 4 R ∆ A B C ⇒ A B 2 . B C = 4 S ∆ A B C
⇔ m 4 + m . 2 m = 4 m 2 m ⇔ m 4 - 2 m 2 + m = 0 ⇔ m m 3 - 2 m + 1 = 0 .
Kết hợp với m > 0 suy ra có 2 giá trị m cần tìm.