Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x 3 + ( k 2 - k + 1 ) x trên đoạn [-1;2]. Khi k thay đổi trên ℝ , giá trị nhỏ nhất của M - m bằng.
Tìm tất cả các giá trị thực của tham số m để hàm số liên tục và đạt giá trị nhỏ nhất trên [0;2] tại một điểm x 0 ∈ ( 0 ; 2 ) .
A. m > 1
B. -1 < m < 1
C. m > 2
D. 0 < m < 1
Tìm m để hàm số f ( x ) = m x + 5 x - m đạt giá trị nhỏ nhất trên đoạn [0;1] bằng -7
A. m = 2
B. m = 1
C. m = 0
D. m = 5
Tìm tất cả các giá trị thực của tham số m để hàm số y = x 2 - m x + 4 x - m liên tục và đạt giá trị nhỏ nhất trên [0;4] tại một điểm x o ∈ ( 0 ; 4 ) .
A. m > 2
B. 0 < m < 2
C. -2<m<0
D. -2<m<2
Tìm tất cả các giá trị thực của tham số m để hàm số y = x 2 + m x + 1 x + m liên tục và đạt giá trị nhỏ nhất trên [0;2] tại một điểm x o ∈ ( 0 ; 2 ) .
A. 0 < m <1
B. m > 1
C. m > 2
D. -1< m < 1
Kí hiệu a, b lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số f (x) = sin2x + 2sinx trên đoạn . Giá trị a +b bằng
Kí hiệu a,b lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số f x = sin 2 x + 2 sin x trên đoạn 0 ; 3 π 2 . Giá trị a+b bằng
Gọi M và N lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên Biểu thức có giá trị bằng:
A. 0
B. 4 2 - 3
C. 2
D. 2 + 3 + 2
Gọi M và N lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = - 1 + 2 . cos x 2 - 3 . sin x + cos x trên ℝ . Biểu thức M + N + 2 có giá trị bằng:
A. 0
B. 4 2 - 3
C. 2
D . 2 + 3 + 2
Hàm số f(x) = 2.sinx + sin2x trên đoạn 0 , 3 π 2 có giá trị lớn nhất là M, giá trị nhỏ nhất là m. Khi đó M+m bằng:
A . - 3 3
B . 3 3
C . - 3 3 4
D . 3 3 2