Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nhi Đặng

Có bao nhiêu giá trị nguyẻn của tham số m để đồ thị hàm số y= -x^4+2(2+m)x^2-4-m không có điểm chung với trục hoành ????

Akai Haruma
14 tháng 2 2017 lúc 18:01

Lời giải:

Đồ thị hàm số \(y=-x^4+2(m+2)x^2-(4+m)\) không có điểm chung với trục hoành nghĩa là phương trình \(x^4-2(m+2)x^2+(m+4)= 0\) vô nghiệm

Đặt \(x^2=t\). Khi đó ta cần tìm $m$ nguyên sao cho \(t^2-2(m+2)t+(m+4)=0(1)\) vô nghiệm

Sẽ có hai kiểu xảy ra:

Kiểu 1: \((1)\)\(\Delta'=(m+2)^2-(m+4)=m^2+3m<0\Leftrightarrow -3< m<0\)

\(m\in\mathbb{Z}\Rightarrow m\in \left \{ -1,-2 \right \}\)

Kiểu 2: \((1)\) có nghiệm nhưng hai nghiệm đó là hai nghiệm âm( Kết hợp với \(t\geq 0\) sẽ suy ra mâu thuẫn, phương trình vô nghiệm)

Trước tiên \(\Delta'=m^2+3m\geq 0\Rightarrow \) \(\left[\begin{matrix}m\ge0\\m\le-3\end{matrix}\right.\)

Theo hệ thức Viet: \(\left\{\begin{matrix} t_1+t_2=2(m+2)<0 \\ t_1t_2=m+4> 0\end{matrix}\right.\Rightarrow -4< m<-2\Rightarrow m=-3\)

Vậy \(m\in \left \{-1,-2,-3\right\}\)


Các câu hỏi tương tự
Nguyễn Hoàng
Xem chi tiết
Nguyễn Thị Phương Thảo
Xem chi tiết
Nguyễn Thị Phương Thảo
Xem chi tiết
Ngô Thị Ánh Vân
Xem chi tiết
Nguyễn Đức
Xem chi tiết
Minh Cương
Xem chi tiết
Nguyễn Thị Phương Thảo
Xem chi tiết
Phan Anh Dũng
Xem chi tiết
Khánh Phạm Ngọc
Xem chi tiết