Ta có: Δ = 4 m − 3 2 − 4.2. 1 − 2 m = 4 m − 1 2
2 x 2 + 2 x 2 − 4 m − 3 x 2 + 2 x + 1 − 2 m = 0 ⇔ x 2 + 2 x = 1 2 ( 1 ) x 2 + 2 x = 2 m − 1 ( 2 )
( 1 ) ⇔ x 2 + 2 x − 1 2 = 0 ⇔ x = − 2 + 6 2 ∉ − 3 ; 0 x = − 2 − 6 2 ∈ − 3 ; 0
2 ⇔ x + 1 2 = 2 m . Phương trình đã cho có đúng 1 nghiệm thuộc đoạn - 3 ; 0 khi và chỉ khi phương trình (2) có nghiệm nhưng không thuộc đoạn - 3 ; 0 hoặc vô nghiệm.
Xét (2), nếu m < 0 thì (2) vô nghiệm (thỏa mãn yêu cầu).
+) Nếu m = 0 thì (2) có nghiệm duy nhất x = - 1 ∈ - 3 ; 0 (không thỏa yêu cầu).
+) Nếu m > 0 thì (2) có hai nghiệm phân biệt x 1 = − 1 − 2 m < − 1 + 2 m = x 2 nên (2) có hai nghiệm không thuộc - 3 ; 0 nếu
− 1 − 2 m < − 3 − 1 + 2 m > 0 ⇔ m > 2 m > 1 2 ⇔ m > 2
Vậy m < 0 m > 2
Mà m ∈ - 2019 ; 2019 và m ∈ Z nên m ∈ - 2018 ; - 2017 ; . . . ; - 1 ; 3 ; 4 ; . . . ; 2018
Số các giá trị của m thỏa mãn bài toán là 2018 + 2016 = 4034.
Đáp án cần chọn là: D