Cho m và n là các số nguyên dương thỏa mãn 10(m2+1)=n2+1 tại m2+1 là số nguyên tố. Tìm số cặp (m;n)
1.Tìm số nguyên n sao cho n^2+3 là số chính phương
2.Tìm số tự nhiên n để n^2+3n+2 là số nguyên tố
3.Tìm số nguyên tố p để p+1 là số chính phương
Tìm tất cả các số nguyên dương m,n sao cho p = m^2+n^2 là số nguyên tố và m^3+n^3 - 4 chia hết cho p
CMR:
a) Nếu b là số nguyên tố khác 3 thì A=3n+2+2014b2 là hợp số với mọi số tự nhiên n
b) Nếu p và 8p2+1 là các số nguyên tố thì 8p2+2p+1 là số nguyên tố
c) Nếu k là số tự nhiên lớn hơn 1 thỏa mãn k2+4 và k2+16 là các số nguyên tố thì k chia hết cho 5
1) có bao nhiêu cặp số nguyên dương (x,y) sao cho \(\frac{2015}{x^2-y^2}\)là 2 số tự nhiên
2)tìm cặp số tự nhiên (a,b) sao cho a2+b2 và a2-b2 đều là ước của 2015
3) có bao nhiêu bộ 3 các số nguyên dương(a,b,c) tm a+b+c=6
Tìm số tự nhiên n để p là số nguyên tố biết : n3-n2+n-1
Tìm Tìm số tự nhiên n để :
A=n3-n2+n-1 là số nguyên tố.
tìm n là số tự nhiên sao cho C = n³-n²-n-2 là số nguyên tố
1. Cho n là số tự nhiên \(\left(n\ge1\right)\). Giả sử \(2^n+1\)là 1 số nguyên tố. Cmr : n là một lũy thừa của 2
2. Cmr : tồn tại vô số số nguyên dương a sao cho n^4+a là k số nguyên tố \(\forall n\inℕ^∗\)
3. Cmr : \(\forall\)số nguyên tố p > 7 ta có : \(3^p-2^p-1⋮42\)