Lời giải:
a. Vì $AH:AC=3:5$ nên đặt $AH=3a; AC=5a$ với $a>0$
Ta có: $AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}$
$AH^2=\frac{AB^2AC^2}{BC^2}=\frac{AB^2.AC^2}{AB^2+AC^2}$
$(3a)^2=\frac{15^2.(5a)^2}{15^2+(5a)^2}$
$\Leftrightarrow 9a^2=\frac{225a^2}{a^2+9}$
$\Leftrightarrow 9=\frac{225}{a^2+9}$
$\Leftrightarrow 9(a^2+9)=225$
$\Rightarrow a=4$ (cm)
$AH=3a=12$ (cm); $AC=5a=20$ (cm)
Áp dụng định lý Pitago:
$HC=\sqrt{AC^2-AH^2}=\sqrt{20^2-12^2}=16$ (cm)
$HB=\sqrt{AB^2-AH^2}=\sqrt{15^2-12^2}=9$ (cm)
b.
Vì $AEHF$ có 3 góc vuông $\widehat{A}=\widehat{E}=\widehat{F}=90^0$ nên đây là hình chữ nhật
$\Rightarrow EF=AH$
Do đó: $EF.BC=AH.BC=2S_{ABC}=AB.AC$ (đpcm)