có ai biết giải bài này k hộ mình với mong các bn giúp cho ( xin cảm ơn)
Bài 2: cho tam giác ABC vuông tại A đường phận giác AD, \(\dfrac{BD}{DC}=\dfrac{3}{7}\) , BC=20 . tính AB, AC.
Bài3: cho tam giác ABC vuông tại A, P/G AD, gọi E, F lần lượt là hình chiếu của D lên AB và AC. Biết BD =3, DC=4. C/M ADEF là hình vuông, tính diện tích của nó.
Bài 4: cho tam giác ABC vuông tại A, góc B>C trong góc ABC kẻ tia Bx tạo với BA một góc bằng góc C. Tia Bx cắt AC tại M. Gọi E là hình chiếu của M lên BC. Phân giác góc MEC cắt MC tại D. biết \(\dfrac{MD}{DC}=\dfrac{3}{4}\) và MC=15cm
a, tính ME.CE
b, C/M AB2=AM.AC
Bài 2:
Ta có: \(\dfrac{BD}{DC}=\dfrac{3}{7}\)
nên \(\dfrac{AB}{AC}=\dfrac{3}{7}\)
hay \(AB=\dfrac{3}{7}AC\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2\cdot\dfrac{9}{49}+AC^2=20^2=400\)
\(\Leftrightarrow AC^2=\dfrac{9800}{29}\)
\(\Leftrightarrow AC=\dfrac{70\sqrt{58}}{29}\left(cm\right)\)
\(\Leftrightarrow AB=\dfrac{3}{7}\cdot AC=\dfrac{30\sqrt{58}}{29}\left(cm\right)\)