Giả sử \(\sqrt{11}\)là số hữu tỉ thì đc viết dưới dạng
\(\sqrt{11}=\frac{m}{n}\)với \(m,n\in N\), (m,n)\(=1\)
Do 11 không là SCP nên \(\frac{m}{n}\notin N\)\(\Rightarrow n>1\)
Ta có \(m^2=11\cdot n^2\)
Gọi p là ước nguyên tố nào đó của n, suy ra \(m^2⋮p\), hay \(m⋮p\)
Như vậy, p là ước nguyên tố của mvà n trái với giả thiết
Vậy \(\sqrt{11}\)là số vô tỉ
Chứng minh phản chứng :
Giả sử √2 là số hữu tỉ
=> √2 = a/b với a, b nguyên và a/b tối giản hay (a ; b) = 1 (1)
√2 = a/b
<=> 2 = a²/b²
<=> b² = a²/2
=> a² chia hết cho 2
=> a chia hết cho 2 (vì 2 là số nguyên tố) (2)
=> a = 2k. Thay vào :
2 = a²/b²
<=> 2 = (2k)²/b²
<=> b² = 2k²
=> b² chia hết cho 2
=> b chia hết cho 2 (3)
Từ (2) và (3) => ƯC (a ; b) = 2
=> Mâu thuẫn (1)
=> Điều giả sử là sai
=> √2 là số vô tỉ (đpcm)