2015=2014+1 => 2015^2=2014^2 +2.2014+1
=>2014^2 + 1=2015^2 -2.2014=2015^2 -2. 2014/2015.2015
thế vào =>b= 2015-2014/2015+2014/2015=2015
2015=2014+1 => 2015^2=2014^2 +2.2014+1
=>2014^2 + 1=2015^2 -2.2014=2015^2 -2. 2014/2015.2015
thế vào =>b= 2015-2014/2015+2014/2015=2015
Tính gía trị biểu thức:
\(A=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+....+\frac{1}{2014\sqrt{2013}+2013\sqrt{2014}}+\frac{1}{2015\sqrt{2014}+2014\sqrt{2015}}\)
cho
\(B=\sqrt{1+2014^2+\frac{2014^2}{2015^2}}+\frac{2014}{2015}\)có giá trị nguyên
RGBT:
E=\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{2015\sqrt{2014}+2014\sqrt{2015}}+\frac{1}{2016\sqrt{2015}+2015\sqrt{2016}}\)
CM:a)\(2\left(\sqrt{a}-\sqrt{b}\right)< \frac{1}{\sqrt{b}}< 2\left(\sqrt{a}-\sqrt{b}\right)biet:a=b+1=c+2\left(c>0\right).\)
b)\(CM:B=\sqrt{1+2014^2+\frac{2014^2}{2015^2}}+\frac{2014}{2015}nguyen\)
chứng minh A = \(\sqrt{1+2014^2+\frac{2014^2}{2015^2}}+\frac{2014}{2015}\)là số tự nhiên
Chứng tỏ rằng biểu thức B=\(\sqrt{1+2014^2+\frac{2014^2}{2015^2}}+\frac{2014}{2015}\) có giá trị là một số nguyên.
Giải pt:
\(\frac{\sqrt{x-2014}-1}{x-2014}+\frac{\sqrt{y-2015}-1}{y-2015}+\frac{\sqrt{z-2016}-1}{z-2016}=\frac{3}{4}\)
Tính giá trị biểu thức : \(S=\frac{1}{1\sqrt{2}+2\sqrt{1}}+\frac{1}{2\sqrt{3}+3\sqrt{2}}+.....+\frac{1}{2014\sqrt{2015}+2015\sqrt{2014}}\)
Cho M=\(\frac{\sqrt{2}-\sqrt{1}}{1+1}+\frac{\sqrt{3}-\sqrt{2}}{2+3}+\frac{\sqrt{4}-\sqrt{3}}{3+4}+...+\frac{\sqrt{2015}-\sqrt{2014}}{2014+2015}\)
Hãy so sánh M với 1/2