Cmr:a/(b+2c)+b/(c+2a)+c/(a+2b)>=b/(b+2a)+c/(c+2b)+a/(a+2c)
Cho a,b,c là độ dài 3 cạnh tam giác.Tìm GTLN của biểu thức P=\(\sqrt{\frac{2a}{2b+2c-a}}+\sqrt{\frac{2b}{2c+2a-b}}+\sqrt{\frac{2c}{2a+2b-c}}\)
Cho tam giác ABC có c^h-2a^2c^2-2b^2c^2+a^2+a^2b^2+b^4. Tính cos C
Cho a,b,c>0. CM
\(\frac{\left(2a+b+c\right)^2}{2a^2+\left(b+c\right)^2}+\frac{\left(2b+c+a\right)^2}{2b^2+\left(c+a\right)^2}+\frac{\left(2c+a+b\right)^2}{2c^2+\left(a+b\right)^2}\le8\)
Cho a,b,c∈Ra,b,c∈R và a2+b2+c2=21a2+b2+c2=21. Chứng minh rằng: 7≤|a−2b|+|b−2c|+|c−2a|≤√3997≤|a−2b|+|b−2c|+|c−2a|≤399 Ý tưởng: ( Nhưng không chắc chắn là đúng hướng :'> ) Dùng bất đẳng thức Cauchy-Schwarz để chứng minh bài toán -> x1+x2+...+xn≤|x1|+|x2|+...+|xn|≤√n(x21+x22+...+x2n)
Chứng minh biết 0 < a;b;c < 1. 2a3+ 2b3 + 2c3 \(\le3+a^2b+b^2c+c^2a\)
\(P=\frac{a-c}{a+b-2c}+\frac{3c-a+b}{2a+b+c}+\frac{5a+2b}{a+b+2c}\) Tìm Min của P
Nếu a+2c>b+c thì bất đẳng thức nào sau đây đúng?
a.-3a>-3b b.a^2 > b^2 c.2a>2b
tam giác ABC có \(\dfrac{a}{b}=\dfrac{m_b}{m_a}\ne1\). tìm hệ thức đúng
A) \(b^2+c^2=2a^2\) B) \(a^2+c^2=2b^2\)
C) \(a^2+b^2=2c^2\) D) \(2a^2+b^2=c^2\)