Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kiệt Nguyễn

\(CMR:a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)

Phạm Thị Thùy Linh
1 tháng 6 2019 lúc 9:57

\(a^3+b^3+c^3-3abc\)

\(=\left(a^3+3a^2b+3ab^2+b^3\right)+c^3-\left(3a^2b+3ab^2+3abc\right)\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)\(\left(đpcm\right)\)

Kiên-Messi-8A-Boy2k6
1 tháng 6 2019 lúc 10:01

\(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)


Các câu hỏi tương tự
seto kaiba
Xem chi tiết
hoaan
Xem chi tiết
Mai Ngoc
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
Diệu Anh Hoàng
Xem chi tiết
ThanhNghiem
Xem chi tiết
Đặng Nguyễn Khánh Uyên
Xem chi tiết
Khánh Ngọc
Xem chi tiết
Đặng Nguyễn Khánh Uyên
Xem chi tiết