\(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\) \(\left(1\right)\)
\(\Leftrightarrow\) \(a^2+b^2+c^2+d^2+e^2-a\left(b+c+d+e\right)\ge0\)
\(\Leftrightarrow\) \(a^2+b^2+c^2+d^2+e^2-ab-ac-ad-ae\ge0\)
\(\Leftrightarrow\) \(\left(\frac{a^2}{4}-ab+b^2\right)+\left(\frac{a^2}{4}-ac+c^2\right)+\left(\frac{a^2}{4}-ad+d^2\right)+\left(\frac{a^2}{4}-ae+e^2\right)\ge0\)
\(\Leftrightarrow\) \(\left(\frac{a}{2}-b\right)^2+\left(\frac{a}{2}-c\right)^2+\left(\frac{a}{2}-d\right)^2+\left(\frac{a}{2}-e\right)^2\ge0\) với mọi \(a,\) \(b,\) \(c,\) \(d,\) \(e\in R\) \(\left(2\right)\)
Bất đẳng thức \(\left(2\right)\) đúng, mà các phép biến đổi trên tương đương nên bất đẳng thức \(\left(1\right)\) được chứng minh.
Xảy ra đẳng thức trên khi và chỉ khi \(b=c=d=e=\frac{a}{2}\), tức \(a=2b=2c=2d=2e\)