Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
trương mỹ nhàn

CMR

\(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)với a,b,c,d,e \(\varepsilon\)R

Phước Nguyễn
9 tháng 3 2016 lúc 18:34

\(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)  \(\left(1\right)\)

\(\Leftrightarrow\)  \(a^2+b^2+c^2+d^2+e^2-a\left(b+c+d+e\right)\ge0\)

\(\Leftrightarrow\)  \(a^2+b^2+c^2+d^2+e^2-ab-ac-ad-ae\ge0\)

\(\Leftrightarrow\)  \(\left(\frac{a^2}{4}-ab+b^2\right)+\left(\frac{a^2}{4}-ac+c^2\right)+\left(\frac{a^2}{4}-ad+d^2\right)+\left(\frac{a^2}{4}-ae+e^2\right)\ge0\)

\(\Leftrightarrow\)  \(\left(\frac{a}{2}-b\right)^2+\left(\frac{a}{2}-c\right)^2+\left(\frac{a}{2}-d\right)^2+\left(\frac{a}{2}-e\right)^2\ge0\)  với mọi  \(a,\)  \(b,\)  \(c,\)  \(d,\)  \(e\in R\)  \(\left(2\right)\)

Bất đẳng thức  \(\left(2\right)\)  đúng, mà các phép biến đổi trên tương đương nên bất đẳng thức  \(\left(1\right)\)  được chứng minh.

Xảy ra đẳng thức trên khi và chỉ khi   \(b=c=d=e=\frac{a}{2}\), tức  \(a=2b=2c=2d=2e\)


Các câu hỏi tương tự
Nguyễn Minh Châu
Xem chi tiết
Nguyễn Công Minh Hoàng
Xem chi tiết
tran thu ha
Xem chi tiết
Aeris
Xem chi tiết
Đông Kuter
Xem chi tiết
Nguyễn Minh Đăng
Xem chi tiết
Luong Ngoc Quynh Nhu
Xem chi tiết
zZz Cool Kid_new zZz
Xem chi tiết
Nhân Trần Tiến
Xem chi tiết