\(x^3+1=\left(x+1\right)\left(x^2-x+1\right)\)
=> \(\left(x^6-1\right)=\left(\left(x^3\right)^2-1\right)=\left(x^3-1\right)\left(x^3+1\right)=\left(x^3-1\right)\left(x+1\right)\left(x^2-x+1\right)⋮x^2-x+1\)
Dạo này bận quá ít thời gian làm =(((
\(x^6-1\)
\(=\left(x^3\right)^2-1^2\)
\(=\left(x^3-1\right)\left(x^3+1\right)\)
\(=\left(x^3-1^3\right)\left(x^3+1^3\right)\)
\(=\left(x-1\right)\left(x^2+x+1\right)\left(x+1\right)\left(x^2-x+1\right)⋮\left(x^2-x+1\right)\forall x\left(đpcm\right)\)
\(x^6-1\)
\(=\left(x^3\right)^2-1^2\)
\(=\left(x^3-1\right)\left(x^3+1\right)\)
\(=\left(x^3-1\right)\left(x+1\right)\left(x^2-x+1\right)⋮x^2-x+1\)
\(\Rightarrowđpcm\)