Gọi UCLN \(21n+4\)và \(14n+3\)là \(d\)\((d\inℕ^∗)\)
\(\Rightarrow\hept{\begin{cases}21n+4⋮d\\14n+3⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2\left(21n+4\right)⋮d\\3\left(14n+3\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}42n+8⋮d\\42n+9⋮d\end{cases}}\)
\(\Rightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\)
\(\Rightarrow1⋮d\)
Mà \(d\inℕ^∗\)
\(\Rightarrow d=1\)
\(\Rightarrow\left(21n+4,14n+3\right)=1\)\(\forall n\inℕ^{ }\)