Bài 1)a)Chứng minh rằng: với mọi số nguyên n ta luôn có: \(\left(n^3-n\right)\)chia hết cho 6
b)Với mọi số nguyên n ta luôn có \(\left(n^5-n\right)\)chia hết cho 30
c)cho a,b,c là các số nguyên. CMR \(\left(a^3+b^3+c^3\right)\)chia hết cho 6 <=> (a+b+c) chia hết cho 6
1, Cho đa thức \(P\left(x\right)=ax^3+bx^2+cx+d\) với a,b,c,d là các hệ số nguyên. CMR nếu P(x) chia hết cho 5 với mọi giá trị nguyên của x thì các hệ số a,b,c,d đều chia hết cho 5
2, GPT nghiệm nguyên: \(5x^2+8y^2=20412\)
a, CMR với mọi số nguyên n không chia hết cho 5 thì \(n^4-1\) chia hết cho 5
b, Tìm tất cả các số nguyên tố a, b, c ,d, e tm \(a^4+b^4+c^4+d^4+e^4=abcde\)
c, Tìm các số nguyênduwongc a,b tm \(a\left(ab+1\right)⋮a^2+b\) và \(b\left(ab+1\right)⋮b^2-a\)
CMR: A=(4+a-3b)(3a-5b-1) chia hết cho 16 với mọi số nguyên a và b.
CMR với mọi số nguyên n thì A=n^2+n+2015 không chia hết cho 3
CMR với mọi số nguyên a thì A=\(a^3-6a^2-7a+12\) luôn chia hết cho 6
Cho a, b, n là các số nguyên dương. Biết rằng với mọi số tự nhiên k khác b ta đều có k^n - a chia hết cho k - b. CMR: a = b^n
CMR: Với mọi số nguyên lẻ n thì 46^n+296*13^n chia hết cho 1947
CMR: Với mọi số nguyên lẻ n thì 46^n+296*13^n chia hết cho 1947.?