Chứng minh rằng trong tập nguyên dương luôn tồn tại số k sao cho 2017^k-1 chia hết cho 10^5
Chứng minh rằng trong 2013 số tự nhiên n1,n2,....n2013 bất kì luôn tồn tại 1 số chia hết cho 2013 hoặc hữu hạn số khác nhau trong 2013 số có tổng chia hết cho 2013
Tìm tất cả các số nguyên dương k sao cho tồn tại số nguyên dương n thỏa mãn 2n+11 chia hết cho 2k-1.
Tìm số nguyên dương a sao cho tồn tại số nguyên dương n thỏa mãn a chia hết cho cả hai số n2 + 1 và (n+1)2 +1
Chứng minh rằng trong 2n - 1 số tự nhiên khác nhau luôn tìm được n số có tổng chia hết cho n (n nguyên dương)
Tìm tất cả các số nguyên dương a sao cho tồn tại số nguyên dương n thỏa mãn a chia hết cho cả hai số n2 + 1 và ( n + 1 )2 + 1
Cho số nguyên dương a1,a2,a3,...,a2015 tm điều kiện"
\(\frac{1}{\sqrt{a_1}}+\frac{1}{\sqrt{a_2}}+\frac{1}{\sqrt{a_3}}+...+\frac{1}{\sqrt{a_{2015}}}\ge89\)
CMR trong 2015 số nguyên dương đó , luôn tồn tại ít nhất 2 số bằng nhau.
Cho A là một số nguyên dương gồm 4039 chữ số, trong đó có 2019 chữ số 1 và 2020 chữ số 0. CMR không tồn tại hai số nguyên dương a,n lớn hơn 1 thỏa mãn A=\(a^n\)
Cho 2015 số nguyên dương a1;a2;...;a2015 thỏa mãn:
\(\frac{1}{\sqrt{a_1}}+\frac{1}{\sqrt{a_2}}+...+\frac{1}{\sqrt{a_{2015}}}\ge89\)
CMR trong 2015 số nguyên dương đó,luôn tồn tại ít nhất 2 số bằng nhau.