cho 19 số tự nhiên liên tiếp. CMR: tồn tại 1 số có tổng các chữ số chia hết cho 10
Bài 1: Cho 8 số tự nhiên có 3 chữ số. Chứng minh rằng trong 8 số đó, tồn tại 2 số mà khi viết liên tiếp nhau thì tạo thành 1 số có 6 chữ số chia hết cho 7
Bài 2: Cho 3 chữ số khác nhau và khác 0. Lập tất cả các số tự nhiên có 3 chữ số gồm cả 3 chứ số ấy. Chứng minh rằng tổng của chúng chia hết cho 6 và 37
Bài 3: Một học sinh viết các số tự nhiên từ 1 đến abc(có gạch trên đầu). Bạn đó phải viết tất cả m chữ số. Biết rằng m chia hết cho abc, tìm abc
Mọi người chi tiết hộ nhé, tks
Bài 1: CMR từ 102 số tự nhiên bất kì luôn có thể tồn tại 2 số có tổng hoặc hiệu chia hết cho 200.
Bài 2: CMR từ 10 số tự nhiên bất kì (a1, a2, a3, ... , a10) thì luôn tồn tại 4 số có tổng chia hết cho 4.
Bài 3: CMR từ 13 số tự nhiên bất kì luôn tồn tại 4 số có tổng chia hết cho 4.
CMR tồn tại 1 số tự nhiên chia hết cho 2009 có tổng các chữ số là 2010
Bạn nào giải được mik tick nha! Cảm ơn nhìu!
Có hay không?
a)Tồn tại số tự nhiên x<17 sao cho 25x-1 chia hết cho 17
b)Tồn tại số có dạng 19941994...1994 gồm k số 1994 với k thuộc N và 1<k<1994 chia hết cho 1993
Tìm tất cả các số tự nhiên n để 2n-1 chia hết cho 7.
CMR với mọi số tự nhiên n thì 2n+1 không chia hết cho 7
chứng minh rằng tồn tại số tự nhiên gồm toàn các chữ số 1 và 2 chia hết cho 23
Chứng minh rằng tồn tại số tự nhiên gồm toàn các chữ số 0 và 1 chia hết cho 23
có bao nhiêu số tự nhiên có 8 chữ số mà trong đó mỗi số đều chia hết cho 11 và có mặt tất cả các chữ số từ 1 đến 8