Xét x là số chẵn thì \(x^4⋮16\)
Xét x là số lẻ thì:
\(x^2:8\)dư 1
\(\Rightarrow x^4=\left(8k+1\right)^2:16\)dư 1
Như vậy mỗi số \(x^4;y^4;z^4;t^4\)chia cho 16 dư 1 hoặc 0
Nên \(x^4+y^4+z^4+t^4\)chia cho 16 có số dư không lớn hơn 5
Mà 2015 chia cho 16 dư 15
Dẫn đến mâu thuẫn
Hay x;y;z;t không tồn tại
Vậy phương trình không có nghiệm nguyên