CMR : \(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)không phải là số chính phương với \(n\inℕ^∗\)
Bài 1: CMR
a) A = \(\frac{\left(n+1\right).\left(n+2\right)....\left(2n-1\right).\left(2n\right)}{2^n}\) là số nguyên.
b) B = \(\frac{3.\left(n+1\right).\left(n +2\right)...\left(3n-1\right).3n}{3^n}\)là số nguyên.
Chứng minh rằng:
a)Với mọi n\(\in\)\(ℕ^∗\)thì \(\left(3^{n+2}-2^{n+2}+3^n-2^n\right)⋮10\)
b)Với mọi n\(\inℕ^∗\)thì \(\left(5^{n+2}+5^{n+1}+5^n\right)⋮31\)
Cho đa thức: f( x ) = \(2\cdot\left(x^2\right)^n-5\cdot\left(x^n\right)^2+8\cdot x^{n-1}\cdot x^{1+n}-4\cdot x^{n^2+1}\cdot x^{2\cdot n-n^2-1}\left(n\inℕ\right)\)
a, Thu gọn đa thức f(x)
b, Tìm giá trị nhỏ nhất của f(x) + 2020
CMR với mọi số tự nhiên n>2 thì :
a)\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}\)<\(\frac{1}{2}\)
b)\(\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+...+\frac{1}{\left(2n+1\right)^2}\)<\(\frac{1}{4}\)
c)\(\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{\left(2n+1\right)^2}\right)\)<2
Cho S1=1+\(\frac{1}{5}\);S2=1+\(\frac{1}{5}+\frac{1}{5^2};...;\)Sn=\(1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^n}\left(n\inℕ^∗\right)\)
CMR:1/5S12+1/52S22+.
..+1/5nSn2<1/4
Cho S1=1+\(\frac{1}{5}\);S2=1+\(\frac{1}{5}+\frac{1}{5^2};...;\)Sn=\(1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^n}\left(n\inℕ^∗\right)\)
CMR:1/5S12+1/52S22+.
..+1/5nSn2<1/4
Cho S1=1+\(\frac{1}{5}\);S2=1+\(\frac{1}{5}+\frac{1}{5^2};...;\)Sn=\(1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^n}\left(n\inℕ^∗\right)\)
CMR:1/5S12+1/52S22+.
..+1/5nSn2<1/4
\(CMR:\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2^n}=\frac{\left(2n-1\right)}{2^n}\)