Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyen don

CMR nếu: x+y+z=0 thì:  2(x5+y5+z5) = 5xyz(x2+y2+z2)

Natsumi
30 tháng 7 2015 lúc 10:08

\(y+z=-x\)

\(\left(y+z\right)^5=-x^5\)

\(y^5+5y^4z+10y^3z^2+10y^2z^3+5yz^4+z^5+x^5=0\)

\(x^5+y^5+z^5+5yz\left(y^3+2y^2z+2yz^2+z^3\right)=0\)

\(x^5+y^5+z^5+5yz\left(\left(y+z\right)\left(y^2-yz+z^2\right)+2yz\left(y+z\right)\right)=0\)

\(x^5+y^5+z^5+5yz\left(y+z\right)\left(y^2+yz+z^2\right)=0\)

\(2\left(x^5+y^5+z^5\right)-5xyz\left(\left(y^2+2yz+z^2\right)+y^2+z^2\right)=0\)

\(2\left(x^5+y^5+z^5\right)=5xyz\left(x^2+y^2+z^2\right)\)

Doraemon
8 tháng 9 2018 lúc 8:43

Ta có: \(y+z=-x\)

\(\left(y+z\right)^5=-x^5\)

\(y^5+5y^4z+10y^3z^2+10y^2z^3+5yz^4+z^5+x^5=0\)

\(x^5+y^5+z^5+5yz\left(y^3+2y^2z+2yz^2+z^3\right)=0\)

\(x^5+y^5+z^5+5yz\left(\left(y+z\right)\left(y^2-yz+z^2\right)+2yz\left(y+z\right)\right)=0\)

\(x^5+y^5+z^5+5yz\left(y+z\right)\left(y^2+yz+z^2\right)=0\)

\(2\left(x^5+y^5+z^5\right)-5xyz\left(\left(y^2+2yz+z^2\right)+y^2+z^2\right)=0\)

\(2\left(x^5+y^5+z^5\right)=5xyz\left(x^2+y^2+z^2\right)\)

Kiệt Nguyễn
25 tháng 9 2020 lúc 20:00

Ta có: \(x+y+z=0\Rightarrow x+y=-z\Rightarrow\left(x+y\right)^3=\left(-z\right)^3\Rightarrow x^3+y^3+3xy\left(x+y\right)=-z^3\Rightarrow x^3+y^3+z^3=-3xy\left(x+y\right)=-3xy.\left(-z\right)=3xyz\Rightarrow\left(x^2+y^2+z^2\right)\left(x^3+y^3+z^3\right)=3xyz\left(x^2+y^2+z^2\right)\)\(\Leftrightarrow x^5+y^5+z^5+x^3\left(y^2+z^2\right)+y^3\left(z^2+x^2\right)+z^3\left(x^2+y^2\right)=3xyz\left(x^2+y^2+z^2\right)\Leftrightarrow x^5+y^5+z^5+x^3\left[\left(y+z\right)^2-2yz\right]+y^3\left[\left(z+x\right)^2-2zx\right]+z^3\left[\left(x+y\right)^2-2xy\right]=3xyz\left(x^2+y^2+z^2\right)\)\(\Leftrightarrow x^5+y^5+z^5+x^3\left[x^2-2yz\right]+y^3\left[y^2-2zx\right]+z^3\left[z^2-2xy\right]=3xyz\left(x^2+y^2+z^2\right)\Leftrightarrow2\left(x^5+y^5+z^5\right)=5xyz\left(x^2+y^2+z^2\right)\left(đpcm\right)\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nguyễn Minh Nhật
Xem chi tiết
Trần Hoài Bão
Xem chi tiết
Nguyễn Thị My
Xem chi tiết
Nguyễn Thị My
Xem chi tiết
Nguyễn Thị My
Xem chi tiết
Nguyễn Hà
Xem chi tiết
Nguyễn Đức Duy
Xem chi tiết
Lê Trần Nam Khánh
Xem chi tiết
Vũ Hoài Thu
Xem chi tiết