Ta chứng minh bất đẳng thức sau: \(\left(x+y\right)^2\le2\left(x^2+y^2\right).\)
Biến đổi tương đương ta có; \(x^2+2xy+y^2\le x^2+y^2+x^2+y^2\)
\(\Leftrightarrow2xy\le x^2+y^2\Leftrightarrow x^2-2xy+y^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\)
Vì bất đẳng thức cuối luôn đúng với mọi x, y nên bất đẳng thức cần chứng minh đúng
Áp dụng bất đẳng thức trên ta có:
\(\left(x+y\right)^2\le2\left(x^2+y^2\right)=2.1=2\)( \(x^2+y^2=1\)theo giả thiết )
\(\Leftrightarrow\left(x+y\right)^2\le2\Leftrightarrow-\sqrt{2}\le x+y\le\sqrt{2}.\)
Và một cách nữa!
Đặt \(x+y=t\Rightarrow y=t-x\).
Khi đó \(1=x^2+\left(t-x\right)^2=2x^2+2tx+t^2\) (1)
Viết lại (1) thành phương trình bậc hai đối với x: \(2x^2+2tx+\left(t^2-1\right)=0\) (*)
(*) có nghiệm hay: \(\Delta'=t^2-2\left(t^2-1\right)\ge0\Leftrightarrow t^2\le2\)
Hay \(-\sqrt{2}\le t\le\sqrt{2}\) Hay ta có đpcm.
P/s: Đúng ko ạ?:3
Ta có: \(\left(x-y\right)^2\ge0\)
\(\Leftrightarrow x^2+y^2-2xy\ge0\)
\(\Leftrightarrow x^2+y^2\ge2xy\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x^2+y^2+2xy\right)=\left(x+y\right)^2\)
\(\Leftrightarrow\left(x+y\right)^2\le2\left(x^2+y^2\right)=2.1=2\)
\(\Leftrightarrow-\sqrt{2}\le x+y\le\sqrt{2}\) (đpcm)