Chứng minh: f(x)=ax3+bx2+cx+d có giá trị nguyên với mọi x nguyên khi và chỉ khi 6a, 2b, a+b+c và d là số nguyên
Chứng minh cả chiều xuôi lẫn chiều ngược giúp mình với ạ
<3
Chứng tỏ rằng nếu đa thức \(M\left(x\right)=ax^3+bx^2+cx+d\)có giá trị nguyên với mòi x nguyên thì \(6a,2b,a+b+c,d\)
là các số nguyên
chứng tỏ rằng nếu đa thức ax3 + bx2 + cx + d có giá trị nguyên với mọi xlaf số nguyên thì 6a, 2b, a+ b+ c là các số nguyên
Cmr: 6a, 2b, a+b+c, d nguyên<=>f(x) = ax^+bx^2+cx+d có giá trị nguyên với mọi x nguyên
Cho đa thức P(x) = ax3 + bx2 + cx + d . Chứng minh rằng 6a ; 2b ; a + b + c ; d là số nguyên thì P(x) là số nguyên với mọi số nguyên x .
chứng minh rằng f(x)=ax^3+bx^2+cx+d có giá trị nguyên với mọi x nguyên khi 6a,2b,a+b+c,d là số nguyên
cho đa thức bậc 3 f(x) = ax3 +bx2 + cx +d với a là số nguyên dương. Biết rằng f(5) - f(4) = 2020. CMR: f(7) - f(2) là hợp số
1 a. tìm số tự nhiên n để phân số 7n-8/2n-3 có giá trị lớn nhất
b. Cho đa thức p(x)=ax3+bx2+cx+d với a,b,c,d là các hệ số nguyên . Biết rằng p(x) chia hết cho 5 với mọi x nguyên. Chứng minh rằng a,b,c,d đều chia hết cho 5
c. cho a b c là độ dài 3 cạnh tam giác chứng minh a/b+c + b/a+c +c/a+b < 2
mình cần gấp nha, cảm ơn
CMR P(x) = ax3 + bx2 + cx + d có giá trị nguyên vói mọi x nguyên khi và chi khi 6a , 2b, a+b và d là số nguyên