Xét \(a=0\Rightarrow|b|\ge2\)Khi đó phương trình chắc chắn có nghiệm \(x=\frac{1}{b}\)
Xét: \(a\ne0,\) \(\Delta=b^2-2.2a\left(1-a\right)=4a^2-4a+b^2\)
\(|a|+|b|\ge2\Leftrightarrow|b|\ge2-|a|\Rightarrow b^2\ge a^2-4|a|+4\)
\(\Rightarrow\Delta\ge5a^2-4a-4|a|+4\)
Xét: \(a\le0\Rightarrow|a|=-a\Rightarrow\Delta=5a^2-4a-4|a|+4=5a^2+4>0\)---> phương trình luôn có nghiệm.
\(a\ge0\Rightarrow|a|=a\Rightarrow\Delta=5a^2-8a+4=5\left(x-\frac{4}{5}\right)^2+\frac{4}{5}>0\)---> phương trình luôn có nghiệm.







