Gọi d là ƯCLN(a2, a+ b)
=> a2 chia hết cho d
a + b chia hết cho d => a ( a +b) chia hết cho d hay a2 + ab chia hết cho d.
=> a2 + ab - a2 chia hết cho d
=> ab chia hết cho d; mà a, b là hai số nguyên tố cùng nhau (a,b) = 1
=> a chia hết cho d hoặc b chia hêt cho d.
Nếu a chia hết cho d: Ta có: a + b chia hết cho d => b chia hết cho d=> d\(\in\) ƯC (a;b) mà \(ƯCLN\)(a , b) =1 => d = 1 =>\(ƯCLN\)(a2, a + b) =1
Nếu b chia hết cho d: Ta có a + b chia hết cho d => a chia hết cho d=> d\(\in\) ƯC (a;b) mà \(ƯCLN\)(a , b) =1 => d = 1 =>\(ƯCLN\)(a2, a + b) =1
Vậy (a2, a + b) =1