Ta có
a^2 + b^2 +c^2 = ab + ac + bc
=> a^2 +b^2 +c^2 - ab - bc -ac = 0
=> 2(a^2 + b^2 +c^2 -ab-bc-ac) = 2.0 = 0
=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ac = 0
=> a^2 - 2ab + b^2 + b^2 - 2bc + c^2 + c^2 -2ac + c^2 = 0
=> ( a-b)^2 + ( a-c)^2 + ( b-c)^2 = 0
Vì ba cái đều lớn hơn = 0 => = 0 khi cả ba caí = 0
a -b = 0 => a=b
a - c = 0 a = c
b - c = 0 b = c
=> a = b= c => ĐPCM hơi tắt tí
Ta có: a2+b2+c2=ab+bc+ca
=>2(a2+b2+c2)=2(ab+bc+ca)
<=>2a2+2b2+2c2=2ab+2bc+2ca
<=>2a2+2b2+2c2-2ab-2bc-2ca=0
<=>a2+a2+b2+b2+c2+c2-2ab-2bc=2ca=0
<=>(aa-2ab+b2)+(b2-2bc+b2)+(a2-2ca+c2)=0
<=>(a-b)2+(b-c)2+(a-c)2=0
=>hoặc (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0<=>a-b=0 hoặc b-c=0 hoặc a-c=0<=>a=b hoặc b=c hoặc a=c
=> a=b=c (đpcm)
Ta có: a2+b2+c2=ab+bc+ca
=>2(a2+b2+c2)=2(ab+bc+ca)
<=>2a2+2b2+2c2=2ab+2bc+2ca
<=>2a2+2b2+2c2-2ab-2bc-2ca=0
<=>a2+a2+b2+b2+c2+c2-2ab-2bc=2ca=0
<=>(aa-2ab+b2)+(b2-2bc+b2)+(a2-2ca+c2)=0
<=>(a-b)2+(b-c)2+(a-c)2=0
=>hoặc (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0<=>a-b=0 hoặc b-c=0 hoặc a-c=0<=>a=b hoặc b=c hoặc a=c
=> a=b=c (đpcm)
cho mik hỏi là làm thế này đc ko?
Ta có : a^2 + b^2 +c^2 = ab + bc +ca
<=> aa + bb + cc = ab +bc +ca
Đồng nhất ta được : aa = ab ; bb = bc ; cc = ca
=> a = b ; b = c ; c = a => a = b =c