Cho a,b là 2 số nguyên.
CMR:\(5\left(a+b\right)^2+ab\)chia hết cho 441 thì ab cũng chia hết cho 441
cmr,\(\forall n\inℕ\)
a) \(2^{2^{4n+1}}+7⋮11\)
b)\(2^{2^{6n+2}}+3⋮19\)
(dung định lí Fermat )
CMR nếu \(5\left(m+n\right)^2+mn⋮441\) thì \(mn⋮441\left(m,n\in Z\right)\)
1.
a) CMR: Nếu a+b+c=0 thì \(\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{b^2+c^2-a^2}+\dfrac{1}{c^2+a^2-b^2}=0\)
b) Nếu \(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}\) thì:
\(\dfrac{a}{x+2y+z}=\dfrac{b}{2x+2y-z}=\dfrac{c}{4x-4y+z}\)
2. Cho \(\dfrac{x}{x^2+x+1}=a\) .Tính \(M=\dfrac{x^2}{x^4-x^2+1}\)
cmr 1/a^2+2a + 1/b^2+2 b + căn (1+a^2)(1+b^2) >= 21/4
CMR: nếu a>0, b>0, c>0 thì ta có:\(\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}+\frac{c^2}{a^2+b^2}\ge\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
cmr nếu a,b,c>0 thì a/b+c + b/ c+a + c/a+b >= 3/2
CMR nếu a>b>c thì \(\frac{2a^2}{a-b}+\frac{b^2}{b-c}>2a+3b+c\)
Cho cá số thực a, b, c thỏa mãn a2+b2 +c2= (a-b)2+(b-c)2+(c-a)2
Cmr nếu c>=b c>=a thì c>=a+b