Đặt \(N=n^4-2n^3-n^2+2n=n^2\left(n^2-1\right)-2n\left(n^2-1\right)\)
\(=\left(n^2-1\right)\left(n^2-2n\right)=\left(n-1\right)\left(n+1\right)n\left(n-2\right)\)
\(\Rightarrow N\) là tích của 4 số nguyên liên tiếp nên luôn chia hết cho 12
Đặt \(N=n^4-2n^3-n^2+2n=n^2\left(n^2-1\right)-2n\left(n^2-1\right)\)
\(=\left(n^2-1\right)\left(n^2-2n\right)=\left(n-1\right)\left(n+1\right)n\left(n-2\right)\)
\(\Rightarrow N\) là tích của 4 số nguyên liên tiếp nên luôn chia hết cho 12
CMR: n^4 -2n^3-n^2+2n chia hết cho 12 với mọi số nghuyên n
1.Chứng minh với mọi số nguyên n thì:
a) n(2n-3)-2n(n+1) luôn chia hết cho 5
b)(2n-3).(2n+3)-4n(n-9) luôn chia hết cho 9
2.Cho a và b là 2 số tự nhiên biết rằng a chia 5 dư 1, b chia 5 dư 4, cmr a.b chia 5 dư 4
B1: Cmr: a) bình phương của một số nguyên lẻ chia cho 4 thì dư 1
b) bình phương của một số nguyên lẻ chia cho 8 thì dư 1
B2: cmr: a) n2(n+1) + 2n(n+1) chia hết cho 6 với mọi n
b) (2n-1)3 - (2n - 1) chia hết cho 8
Cmr: Với mọi số nguyên n thì
A=(2n+1)×(n^2- 3n-1)- 2n^3+1 chia hết cho 5.
1.chứng min 2n^2 .(n+1)-2n (n^2 +n-3) chia hết cho 6 vs mọi số nguyên n
2.chứng minh n(3-2n)-(n-1) (1+4n)-1 chia hết cho 6 với mọi số nguyên n
giúp mk vs mk cần gấp TT
1,Chứng minh n^6+n^4-2n^2 chia hết cho 72?
2,CMR: 3^(2n) - 9 chia hết cho 72?
3,chứng minh rằng với mọi số tự nhiên n thì 7n và 7n+4 có hai chữ số tận cùng như nhau
4, Chứng minh rằng mọi số nguyên tố p>3 thì p2-1 chia hết cho 24
CMR: Với mọi số nguyên n giá trị biểu thức M = ( 2n + 3 )2 – 9 luôn chia hết cho 4.
cmr với mọi số nguyên n ta có (2n-1)3-(2n -1) chia hết cho 8
Cmr:(2m-3)×(3n-2)-(3m-2)×(2n-3) chia hết cho 5 với mọi số nguyên m,n.