Chứng minh :
\(\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{101}\right)\)\(-\)\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}+\frac{1}{102}\right)\)\(=\)\(\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}+\frac{1}{101}+\frac{1}{102}\)
Mik đng cần gấp , giúp mik nha, giải kĩ cho mik nha
CMR:
a, \(100-\left(1+\frac{1}{2}+\frac{1}{3}+..+\frac{1}{100}\right)=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+..+\frac{99}{100}\)
b, \(\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+..+\frac{1}{200}\right)=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
Giải nhanh giùm mình nhé!!!!!!!!!!!!!!
Bài 1
a rút gọn B=\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{20}\right)\)
b Chứng minh A=\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}>\frac{5}{8}\)
Chứng minh rằng :
\(\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+\frac{1}{54}+...+\frac{1}{100}\)
Tớ có cái này đố các cậu
a)\(\frac{53}{101}.\frac{-13}{97}+\frac{53}{101}.\frac{-84}{97}\)
b)\(\left(\frac{1}{57}-\frac{1}{5757}\right)\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\)
c)\(\frac{-3^3}{25}.\frac{75}{-21}.\frac{50}{35}\)
d)\(\frac{25.48-25.18}{20.5^3}\)
e)\(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{4}\right)+...+\left(1+\frac{1}{2003}\right)\)
f)\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{4}\right)+...+\left(1-\frac{1}{200}\right)\)
Chúc các cậu may mắn!!
a)Tính\(\frac{\left(17\frac{8}{19}-16\frac{9}{18}\right)\left(17,5+16\frac{17}{51}-32\frac{15}{22}\right)}{\frac{7}{3.13}+\frac{7}{13.23}+\frac{7}{23.33}}\)
b) Chứng tò rằng:\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
Chứng minh rằng
\(\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)
B1:Tính hợp lí
a) \(1-\frac{1}{2}\left(1+2\right)-\frac{1}{3}\left(1+2+3\right)-...-\frac{1}{101}\left(1+2+...+101\right)\)
B2
Chứng minh \(1.3.5....99=\frac{51}{2}.\frac{52}{2}.\frac{53}{2}....\frac{100}{2}\)
Giải nhanh nhé .Mình đag cần gấp .Cảm ơn!
Tính : \(K=\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\right).3^5+\left(\frac{1}{3^5}+\frac{1}{3^6}+\frac{1}{3^7}+\frac{1}{3^8}.3^9\right)+...+\left(\frac{1}{3^{97}}+\frac{1}{3^{98}}+\frac{1}{3^{99}}+\frac{1}{3^{100}}\right).3^{101}\)