ĐẶT A/B=C/D=K
=> A=BK
C=DK
SAU ĐỐ BẠN THAY VÀO NHÉ
TICK CHO MÌNH NHA
ĐẶT A/B=C/D=K
=> A=BK
C=DK
SAU ĐỐ BẠN THAY VÀO NHÉ
TICK CHO MÌNH NHA
cho \(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}\left(a;b;c;d\ne0\right)\)
\(A=\frac{2011a-2010b}{c+d}+\frac{2011b-2010c}{a+d}+\frac{2011c-2010d}{a+b}+\frac{2011d-2010a}{b+c}=?\)
tinhs A
Cho \(a;b;c;d>0\)chứng minh
\(\frac{a}{b+2c+3d}+\frac{b}{c+2d+3a}+\frac{c}{d+2a+3b}+\frac{d}{a+2b+3c}\ge\frac{2}{3}\)
cre: dự vào đề tóan quốc tế mỹ
CMR: \(\frac{a}{b}.\frac{c}{d}\)
thì \(\frac{a+d}{a-d}=\frac{c+b}{c-b}\)
\(VT=a+b+\frac{1}{a}+\frac{1}{b}=\left(a+\frac{1}{2a}\right)+\left(b+\frac{1}{2b}\right)+\frac{1}{2a}+\frac{1}{2b}\)
để ý \(1=a^2+b^2\ge2ab\Leftrightarrow ab\le\frac{1}{2}\)
\(\frac{1}{2a}+\frac{1}{2b}\ge2\sqrt{\frac{1}{4ab}}\ge2\sqrt{\frac{1}{2}}\)
\(a+\frac{1}{2a}\ge2\sqrt{\frac{1}{2}}\)
\(b+\frac{1}{2b}\ge2\sqrt{\frac{1}{2}}\)
+ 3 vế thì ta được \(VT\ge6\sqrt{\frac{1}{2}}\) dấu = khi \(\frac{1}{2a}=\frac{1}{2b}....a=\frac{1}{2a}....b=\frac{1}{2b}\)
Dạng 1: Bất đẳng thức cô-si
Bài 1 : Cho a,b.c>0 Chứng minh rằng \(a^3+b^3+c^3\ge a^2b+b^2c+ca^2\)
từ đó Chứng minh dạng tổng quát là : \(a^x+b^x+c^x\ge a^m.b^n+b^m.c^n+c^m.a^n\) ( m,n,x là các số nguyên dương và m+n=x)
Bài 2: Cho a,b.c>0
a)Chứng minh rằng \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\ge a+b+c\)
b) Chứng minh rằng \(\frac{a^4}{a^2b}+\frac{b^4}{b^2c}+\frac{c^4}{c^2a}\ge a+b+c\) ( cả 2 câu này cach làm như nhau nhé !)
Bài 3 :Cho a,b,c> 0 Thỏa mãn abc=1. Chứng minh rằng \(\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{c^3+a^3+1}\le1\)
Áp dụng 1 trong 2 bài trên )
Bài 4:Cho x,y >0 thỏa mãn \(x+y\le2\)
Tìm min của \(A=\frac{1}{x^2}+\frac{1}{y^2}+2x+2y\)
^_^
Mấy câu này các bạn k cần full cũng được!
Cho \(a>b>c>d>0\) thỏa mãn \(a^2+b^2+c^2=1\)
CMR : \(\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\ge\frac{1}{2}\)
:v
cho a,b,c>0
Cmr \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{3}{2}\) (bdt Nesbit)
bang phuong phap SOS
Bài 1: Tính:
\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{1}{2011}}\)
Bài 2: \(CMR\)với \(a,b,c\in R\)(tập số thực),\(a,b,c\ne0\)thỏa mãn \(b^2=ac\)thì
\(\frac{a}{c}=\frac{\left(a+2017b\right)^2}{\left(b+2017c\right)^2}\)
Bài 3: cho \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
\(CMR\)biểu thức sau có giá trị nguyên
\(P=\frac{x+y}{z+t}=\frac{y+z}{t+x}=\frac{z+t}{x+y}=\frac{t+x}{y+z}\)
AI GIÚP MK VỚI
Bài 1: tìm số tự nhiên M nhỏ nhất có 4 chữ số thỏa mãn điều kiện:
\(M=a+b=c+d=e+f\)
biết \(a,b,c,d,e,f\in N\) và \(\frac{a}{b}=\frac{14}{22};\frac{c}{d}=\frac{11}{13};\frac{e}{f}=\frac{13}{17}\)
BÀi 2: cho dãy tỉ số bằng nhau;
\(\frac{2017a+b+c+d}{a}=\frac{a+2017b+c+d}{b}=\frac{a+b+2017c+d}{c}=\frac{a+b+c+2017d}{d}\)
tính \(M=\frac{a+b}{c+d}=\frac{b+c}{d+a}=\frac{c+d}{a+b}=\frac{d+a}{b+c}\)
BÀi 3: cho \(x,y,z,t\ne0\)thỏa mãn:
\(\frac{y+z+t-2017x}{x}=\frac{z+t+x-2017y}{y}=\frac{t+x+y-2017z}{z}=\frac{x+y+z-2017t}{t}\)
và \(x+y+z+t=2016\)tính giá trị của \(P=x+2y-3z+t\)
GIÚP MK VỚI