Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đặng Phương Anh

CMR: \(\frac{1}{3}-\frac{2}{3^2}=\frac{3}{3^3}-\frac{4}{4^4}+.......+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)

Darlingg🥝
27 tháng 6 2020 lúc 12:00

Đặt A = \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+....\frac{99}{3^{99}}-\frac{100}{3^{100}}\)

\(\Rightarrow3A=1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{3^3}+....\frac{99}{3^{98}}-\frac{100}{3^{99}}\)

\(\Rightarrow4A=A+3A=\left(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+.....\frac{1}{3^{98}}-\frac{1}{3^{99}}\right)\)

Đặt B = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+....\frac{1}{3^{98}}-\frac{1}{3^{99}}\Rightarrow4A< B\left(1\right)\)

\(\Rightarrow3B=3-1+\frac{1}{3}-\frac{1}{3^2}+....\frac{1}{3^{97}}-\frac{1}{3^{98}}\)

\(4B=B+3B=3-\frac{1}{3^{99}}< 3\Rightarrow4B< 3\Rightarrow B< \frac{3}{4}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow4A< B< \frac{3}{4}\Rightarrow4A< \frac{3}{4}\Rightarrow A< \frac{3}{4}:4\Rightarrow A< \frac{3}{4}.\frac{1}{4}\Rightarrow A< \frac{3}{16}\)

=> đpcm.

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nguyễn Thị Khánh Huyền
Xem chi tiết
Vũ Văn Bách
Xem chi tiết
NGUYEN NHATMINH
Xem chi tiết
Pham Tien Dat
Xem chi tiết
Lâm Đỗ
Xem chi tiết
Xem chi tiết
Cơn Gió Buồn
Xem chi tiết
Haibara Ail
Xem chi tiết
Nguyễn Bảo Châu
Xem chi tiết