Thê p = 3 vào thì ta được
\(\hept{\begin{cases}p=3\\8p^2+1=73\end{cases}}\) là 2 số nguyên tố.
Xét \(p=3k⋮3\left(k\ne1\right)\)nên không phải số nguyên tố.
Xét \(p=3k+1\)
\(\Rightarrow8\left(3k+1\right)^2+1=72k^2+48k+9⋮3\)nên không phải số nguyên tố.
Xét \(p=3k+2\)
\(\Rightarrow8\left(3k+2\right)^2+1=72k^2+96k+33⋮3\)
Vậy để \(p,8p^2+1\)đồng thời là 2 số nguyên tố thì \(p=3\)