b) a) Gọi d = ƯCLN(2n+5; 3n+7) (d thuộc N*)
=> 2n + 5 chia hết cho d; 3n + 7 chia hết cho d
=> 3.(2n + 5) chia hết cho d; 2.(3n + 7) chia hết cho d
=> 6n + 15 chia hết cho d; 6n + 14 chia hết cho d
=> (6n + 15) - (6n + 14) chia hết cho d
=> 6n + 15 - 6n - 14 chia hết cho d
=> 1 chia hết cho d Mà d thuộc N*
=> d = 1 => ƯCLN(2n+5; 3n+7) = 1
=> 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (đpcm)
a) Gọi hai số lẻ liên tiếp là 2n + 1; 2n + 3 ( n ∈ N)
Gọi d = ƯCLN (2n + 1; 2n + 3)
=> 2n + 1 ; 2n + 3 chia hết cho d
=> (2n + 3) - (2n + 1) chia hết cho d => 2 chia hết cho d
=> d = 1 hoặc d = 2 Vì 2n + 1 lẻ nên 2n + 1 không chia hết cho 2
=> d = 1 => 2n+ 1 và 2n +3 nguyên tố cùng nhau