AM - GM : \(a^4+b^4+c^4+1\ge4\sqrt[4]{a^4b^4b^4}=4\left|abc\right|\ge4abc\)
\(\Leftrightarrow a^4+b^4+c^4\ge4abc-1\)
AM - GM : \(a^4+b^4+c^4+1\ge4\sqrt[4]{a^4b^4b^4}=4\left|abc\right|\ge4abc\)
\(\Leftrightarrow a^4+b^4+c^4\ge4abc-1\)
Cho a,b,c> 0, a+b+c=3
CMR \(a^4+b^4+c^4\ge a^3+b^3+c^3\)
Cho a;b;c > 0 và ab+bc+ca=abc. CMR :
\(\dfrac{a^4+b^4}{ab\left(a^3+b^3\right)}+\dfrac{b^4+c^4}{bc\left(b^3+c^3\right)}+\dfrac{c^4+a^4}{ca\left(c^3+a^3\right)}\ge1\)
CMR
\(3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)
Cho các số dương a, b, c thỏa mãn a + b + c = 6. CMR:
\(\frac{a^4}{b+c}+\frac{b^4}{c+a}+\frac{c^4}{a+b}\ge12\)
Cho a+b+c=0. CMR: a4+b4+c4=\(\dfrac{\left(a^2+b^2+c^2\right)^2}{2}\)
Choa,b,c >0.
CMR: \(\dfrac{a^4}{b^2\left(c+a\right)}+\dfrac{b^4}{c^2\left(a+b\right)}+\dfrac{c^4}{a^2\left(b+c\right)}>=\dfrac{a+b+c}{2}\)
Cho 3 số a, b, c thỏa mãn a + b + c =0. CMR:
\(2\left(a^7+b^7+c^7\right)=7abc\left(a^4+b^4+c^4\right)\)
Cho P=(a+b)(b+c)(c+a)-abc
CMR nếu (a+b+c) chia hết cho 4 thì P chia hết cho 4
cmr
a4+b4+c4+d4≥4abcd