Bạn hãy phá ngoặc ra rồi phân tích
P=(a+b+c)(ab+bc+ac)-2abc
Vì a+b+c chia hết cho 4 nên trong 3 số a,b,c phải có ít nhất1 số chẵn do đó 2abc chia hết cho 4 nên P chia hết cho 4 nếu a+b+c chia hết cho 4
Bạn hãy phá ngoặc ra rồi phân tích
P=(a+b+c)(ab+bc+ac)-2abc
Vì a+b+c chia hết cho 4 nên trong 3 số a,b,c phải có ít nhất1 số chẵn do đó 2abc chia hết cho 4 nên P chia hết cho 4 nếu a+b+c chia hết cho 4
Cho P=(a+b)(b+c)(c+a)-abc với a,b,c thuộc Z. Chứng minh rằng: nếu a,b,c chia hết cho 4 thì P chia hết cho 4
Cho a,b,cx thuộc z thỏa mãn a+b+c chia hết cho 4. Chứng minh: C=(a+b)(b+c)(c+a)-abc chia hết cho 4
Cho a,b,cx thuộc z thỏa mãn a+b+c chia hết cho 4. Chứng minh: C=(a+b)(b+c)(c+a)-abc chia hết cho 4
Cho P=(a+b)(b+c)(a+c)+abc
Nếu a,b,c thuộc Z và a+b+c chia hết cho 6
Chứng minh P-3abc chia hết cho 6
Cho a,b,c thuộc Z và a+b+c=4. C/m M= (a+b)(b+c)(c+a)-abc chia hết cho 4
CMR:
Nếu \(a+b+c\) chia hết cho 6 thì \(a^3+b^3+c^3\) cũng chia hết cho 6.
1. Cho a + b + c = 2p. CMR :
b2 + c2 - a2 + 2bc = 4p (p - a)
2. CMR nếu 2 số a, b nguyên thỏa mãn (5a + 2b) chia hết cho 17 thì (9a + 7b) cũng chia hết cho 17
cho a,b,c ∈ Z sao cho 2a+b , 2b+c , 2c+a là các số chính phương. Biết rằng trong3 số trên có 1 số chia hết cho 3. Cmr: (a-b)(b-c)(c-a) chia hết cho 27
12 Tìm a,b,c để:
a) (x^4+ax^3+bx+c) chia hết cho (x-3)^3
b) (x^5+x^4-9x^3+ax^2+bx+c) chia hết cho (x-2)(x+2)(x+3)
c) (2x^4+ax^2+bx+c) chia hết cho x-2 và khi chia cho x^2-1 thì dư x