\(2A=2+2^2+2^3+2^4+...+2^{120}\)
\(\Rightarrow2A-A=2^{120}-1\)
\(\Rightarrow A=2^{120}-1\)
Ta thấy \(2^8\equiv1\left(mod17\right)\)
\(\Rightarrow\left(2^8\right)^{15}\equiv1^{15}\left(mod17\right)\)
\(\Rightarrow2^{120}\equiv1\left(mod17\right)\)
\(\Rightarrow A=2^{120}-1⋮17\left(đpcm\right)\)